Answer:
0.9 liters of 4.0 M NaOH solution will react with 1.8 moles of sulfuric acid.
Explanation:

According to reaction, 1 mole of sulfuric acid reacts with 2 moles of sodium hydroxide.
Then 1.8 moles of sulfuric acid will react with:
moles of NaOH.
Molarity of NaOH = 4.0 M
Moles of NaOH= n = 3.6 mol
Volume of NaOH = V


0.9 liters of 4.0 M NaOH solution will react with 1.8 moles of sulfuric acid.
Answer:
Ionization energy is the energy required to remove an electron from a specific atom. It is measured in kJ/mol, which is an energy unit, much like calories. The ionization energies associated with some elements are described in the Table 1. For any given atom, the outermost valence electrons will have lower ionization energies than the inner-shell kernel electrons. As more electrons are added to a nucleus, the outer electrons become shielded from the nucleus by the inner shell electrons. This is called electron shielding .
Explanation:
a little summary
Ionization energy refers to the amount of energy needed to remove an electron from an atom.
Ionization energy decreases as we go down a group.
Ionization energy increases from left to right across the periodic table.
Answer: The new pressure is 7.1 atm
Explanation:
To calculate the final pressure of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:

Putting values in above equation, we get:

Hence, the new pressure is 7.1 atm
The number above the symbol is the atomic mass (or atomic weight). This is the total number of protons and neutrons in an atom. The number below the symbol is the atomic number and this reflects the number of protons in the nucleus of each element's atom. Every element has a unique atomic number.
Answer:
∴ΔH₂ = - 12,258 KJ
Explanation:
Enthalpy:
Enthalpy is a property of a thermodynamic system. Enthalpy of a system is equal to the sum of internal energy of the system and presser times volume of the system.
The heat absorbes or releases in a closed system is the change of enthalpy of the system.
Given reactions are:
Reaction 1: C₃H₈(g)+5O₂(g)→ 3CO₂(g)+4H₂O, ΔH₁= - 2043 KJ
Reaction 2: 6C₃H₈(g)+30 O₂(g)→ 18 CO₂(g)+24 H₂O, ΔH₂=?
Take a look at reaction 1 and reaction 2, the only difference is that 1 molecule of C₃H₈ is combusted in reaction 1 and 6 molecules of C₃H₈ is combusted in reaction 2.
We can think the reaction 2 as occurring 6 different container and each containers contains 1 molecule of C₃H₈. The enthalpy is an extensive property. Total enthapy of the 6 containers is = 6×(-2043 KJ)
= - 12,258 KJ
∴ΔH₂ = - 12,258 KJ