Answer:

Explanation:
Hello,
In this case, we consider that at STP conditions (273 K and 1 atm) we know that the volume of 1 mole of a gas is 22.4 L, thereby, for 83.4 L, the resulting moles are:

This is a case in which we apply the Avogadro's law which relates the volume and the moles as a directly proportional relationship.
Best regards.
Answer:
The rate of the reaction will increase by a factor of 9.
Explanation:
Hello,
In this case, considering the given second-order reaction, whose rate law results:
![r=k[A] [B]^2](https://tex.z-dn.net/?f=r%3Dk%5BA%5D%20%5BB%5D%5E2)
We easily infer that at constant concentration of A but tripling the concentration of B, we are going to obtain the following increasing factor while holding the remaining variables constant:
![Increase\ factor=\frac{r_{final}}{r_{initial}} =\frac{k[A][3*B]^2}{k[A][B]^2} =\frac{3^2}{1} \\Increase\ factor=9](https://tex.z-dn.net/?f=Increase%5C%20factor%3D%5Cfrac%7Br_%7Bfinal%7D%7D%7Br_%7Binitial%7D%7D%20%3D%5Cfrac%7Bk%5BA%5D%5B3%2AB%5D%5E2%7D%7Bk%5BA%5D%5BB%5D%5E2%7D%20%3D%5Cfrac%7B3%5E2%7D%7B1%7D%20%5C%5CIncrease%5C%20factor%3D9)
Best regards.
If it has a positive charge it is a cation if negative it is an anion .
I attached a chart that will help you know the charges of the elements
The grams of N2 that are required to produce 100.0 l of NH3 at STP
At stp 1moles = 22.4 l. what about 100.0 L of NH3
= 100 / 22.4 lx1 moles = 4.46 moles of NH3
write the reacting equation
N2+3H2 =2NH3
by use of mole ratio between N2 to NH3 which is 1:2 the moles of N2 =4.46/2 =2.23 moles of N2
mass = moles x molar mass
= 2.23moles x 28 g/mol = 62.4 grams
Answer:
the answer to the qustion is 0.013089701 na
Explanation:
n/a