There are 4 significant figures
Answer:
5 protons, 5 electrons, and 6 neutrons
Answer:
Good and you?
Explanation:
The net ionic equation formed is
Ag^+(aq)+Cl^−(aq)→AgCl(s)
Chromium(III) nitrate and silver(I) chloride are the products of the balanced molecular equation for the reaction between chromium(III) chloride and silver(I) nitrate. An (s) next to the chemical formula for silver(I) chloride designates it as an insoluble salt.
CrCl3(aq)+3AgNO3(aq)→Cr(NO3)3(aq)+3AgCl(s)
Silver and the chloride ions are the two ions that must interact to create silver(I) chloride. By designating ions as the reactants and silver(I) chloride as the product, the net ionic equation is formed.
Ag^+(aq)+Cl^−(aq)→AgCl(s)
Ionic Equation:
In general, anions and cations react to generate a compound in a dissolved media, which is known as an ionic reaction. Water-insoluble salts are created when the ions of water-soluble salts interact with one another in an aqueous media.
To learn more about Ionic equaion click the given link
brainly.com/question/19705645
#SPJ4
Answer:
10.96
Explanation:
<em>A solution is prepared at 25 °C that is initially 0.14 M in diethylamine, a weak base with Kb = 1.3 × 10⁻³, and 0.20 M in diethylammonium chloride. Calculate the pH of the solution. Round your answer to 2 decimal places.</em>
Step 1: Calculate the pOH of the solution
Diethylamine is a weak base and diethylammonium (from diethylammonium chloride) its conjugate acid. Thus, they form a buffer system. We can calculate the pOH of this buffer system using the Henderson-Hasselbach's equation.
pOH = pKb + log [acid]/[base]
pOH = -log 1.3 × 10⁻³ + log 0.20 M/0.14 M
pOH = 3.04
Step 2: Calculate the pH of the solution
We will use the following expression.
pH + pOH = 14
pH = 14 - pOH = 14 -3.04 = 10.96