Answer:
The answer to your question is: letter D
Explanation:
In a combustion reaction, the reactants are always a molecule with Carbon that reacts with oxygen and the products are carbon dioxide and water.
According to the explanation, the only possible solution is:
a) C₆H₁₂O₂(l) ⇒ 6 C(s) + 6 H₂(g) + O₂(g)
b) Mg(s) + C₆H₁₂O₂(l) ⇒ MgC₆H₁₂O₂(aq)
c) 6 C(s) + 6 H₂(g) + O₂(g) ⇒ C₆H₁₂O₂(l)
d) C₆H₁₂O₂(l) + 8 O₂(g) ⇒ 6 CO₂(g) + 6 H₂O(g)
e) None of the above represent the combustion of C₆H₁₂O₂.
Answer:
The simulated 1H NMR spectrum for ethyl acetate is shown in the drawing attached.
Explanation:
To construct this NMR it is necessary to identify the essential components that can produce resonance peaks.
Two main groups can be identified, the acetyl group containing a sub-component (CH3) capable of producing a resonance peak, and the ethyl group containing two components (CH2 and CH3) each of which can produce on its own its own resonance peak.
Ideal gases are hypothetical gases whose molecules occupy negligible space and have no interactions, and that consequently obeys the gas laws exactly.
Not exactly sure about the amount...
I hope this helps! :)