Explanation:
Given the mass of HCl is ---- 0.50 g
The volume of solution is --- 4.0 L
To determine the pH of the resulting solution, follow the below-shown procedure:
1. Calculate the number of moles of HCl given by using the formula:

2. Calculate the molarity of HCl.
3. Calculate pH of the solution using the formula:
![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
Since HCl is a strong acid, it undergoes complete ionization when dissolved in water.

Thus, ![[HCl]=[H^+]](https://tex.z-dn.net/?f=%5BHCl%5D%3D%5BH%5E%2B%5D)
Calculation:
1. Number of moles of HCl given:

2. Concentration of HCl:

3. pH of the solution:
![pH=-log[H^+]\\=-log(0.003425)\\=2.47](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D%5C%5C%3D-log%280.003425%29%5C%5C%3D2.47)
Hence, pH of the given solution is 2.47.
Answer:
Explanation:
1)
Given data:
Initial volume of balloon = 0.8 L
Initial temperature = 12°C ( 12+273= 285 K)
Final temperature = 300°C (300+273 = 573 K)
Final volume = ?
Solution:
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 0.8 L .573 K / 285 K
V₂ = 458.4 L / 285
V₂ = 1.61 L
2)
Initial pressure = 204 kpa
Initial temperature = 29°C ( 29 + 273 = 302 K)
Final temperature = ?
Final pressure = 300 kpa
Solution:
P₁/T₁ = P₂/T₂
T₂ = T₁P₂/P₁
T₂ = 302 K . 300 kpa / 204 kpa
T₂ = 90600 K/ 204
T₂ = 444.12 K
3)
Given data:
Initial volume = 14 L
Initial pressure = 2.1 atm
Initial temperature = 100 K
Final temperature = 450 K
Final volume = ?
Final pressure = 1.2 atm
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 2.1 atm × 14 L × 450 K / 100 K × 1.2 atm
V₂ = 13230 L / 120
V₂ = 110.25 L
Nitrogen is crucial to the marine life and it is disappearing because it cannot be assimilated by most organisms in the water.
A) The limiting reactant is Al
b) Br2 is the excess reactant
c) The amount moles of AlBr3 that get produced will be equal to the number of moles of Al to begin with.
d) 0
Answer:
B. Gravity held the pieces of forming planets together.
c. Gravity pulled most of the matter into the center of the solar system
D. Gravity caused the planets and Sun to have spherical shapes.
Explanation:
When a collection of grains pulled together by their gravitational forces would keep in by the gravity of a star, it would eventually became bigger to the point a planet was formed.
The sun's strong gravitational force pulled most of the matter around it to the center of the solar system.
The spherical shape of planets is a result of their gravity pulling equally from all sides, shaping it into a sphere.