The first thing we must do in this case is find the derivatives:
y = a sin (x) + b cos (x)
y '= a cos (x) - b sin (x)
y '' = -a sin (x) - b cos (x)
Substituting the values:
(-a sin (x) - b cos (x)) + (a cos (x) - b sin (x)) - 7 (a sin (x) + b cos (x)) = sin (x)
We rewrite:
(-a sin (x) - b cos (x)) + (a cos (x) - b sin (x)) - 7 (a sin (x) + b cos (x)) = sin (x)
sin (x) * (- a-b-7a) + cos (x) * (- b + a-7b) = sin (x)
sin (x) * (- b-8a) + cos (x) * (a-8b) = sin (x)
From here we get the system:
-b-8a = 1
a-8b = 0
Whose solution is:
a = -8 / 65
b = -1 / 65
Answer:
constants a and b are:
a = -8 / 65
b = -1 / 65
Answer:-1 and 0
Step-by-step explanation:
The answer is C.
If we square both sides of the equation, we can rid of the exponent on the right side and add a square root to x + 4
Well the position function is:
h(t)=-16t^2+256
It will hit the ground when h(t)=0
-16t^2+256=0 factor out -16
-16(t^2-16)=0 factor difference of squares...
-16(t+4)(t-4)=0, since t>0
t=4 seconds
Answer:
A, B, D
Step-by-step explanation: