Gravitational acceleration, g = GM/r^2. Additionally, for a satellite in a circular orbit, g = v^2/r
Where, G = Gravitational constant, M = Mass of earth, r = distance from the center of the earth to the satellite, v = linear speed of the satellite.
Equating the two expressions;
v^2/r = GM/r^2
v = Sqrt (GM/r);
But GM = Constant = 398600.5 km^3/sec^2
r = Altitude+Radius of the earth = 159+6371 = 6530 km
Substituting;
v = Sqrt (398600.5/6530) = 7.81 km/sec = 781 m/s
As stated in the statement, we will apply energy conservation to solve this problem.
From this concept we know that the kinetic energy gained is equivalent to the potential energy lost and vice versa. Mathematically said equilibrium can be expressed as


Where,
m = mass
= initial and final velocity
g = Gravity
h = height
As the mass is tHe same and the final height is zero we have that the expression is now:






Answer:
The time constant is 1.049.
Explanation:
Given that,
Charge 
We need to calculate the time constant
Using expression for charging in a RC circuit
![q(t)=q_{0}[1-e^{-(\dfrac{t}{RC})}]](https://tex.z-dn.net/?f=q%28t%29%3Dq_%7B0%7D%5B1-e%5E%7B-%28%5Cdfrac%7Bt%7D%7BRC%7D%29%7D%5D)
Where,
= time constant
Put the value into the formula
![0.65q_{0}=q_{0}[1-e^{-(\dfrac{t}{RC})}]](https://tex.z-dn.net/?f=0.65q_%7B0%7D%3Dq_%7B0%7D%5B1-e%5E%7B-%28%5Cdfrac%7Bt%7D%7BRC%7D%29%7D%5D)





Hence, The time constant is 1.049.
Answer:
the rates of rock formation are similar. i could be wrong tho.....
Explanation:
Answer:
a)KE=878.8 J
b)W=2636.4 J
Explanation:
Given that
mass ,m = 65 kg
Initial speed ,u = 5.2 m/s
a)
We know that kinetic energy KE is given as follows

m=mass
u=velocity
Now by putting the values in the above equation we get

KE=878.8 J
b)
We know that
Work done by all forces = Change in the kinetic energy
The final velocity , v= 2 u = 2 x 5.2 m/s
v= 10.4 m/s

Now by putting the values in the above equation we get

W=2636.4 J
a)KE=878.8 J
b)W=2636.4 J