1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inna [77]
3 years ago
14

According to the law of conservation of energy,

Physics
2 answers:
vodka [1.7K]3 years ago
8 0

According to the law of conservation of energy,  

A. an object loses most of its energy as friction

<u>B. the total amount of energy for a system stays the same</u>

Energy is never lost due to the law of conservation

C. the potential energy of an object is always greater than its kinetic energy

D. the kinetic energy of an object is always greater than its potential energy​

antiseptic1488 [7]3 years ago
4 0

Answer:

B) The total amount of energy for a system stays the same. According to the Law of Conservation of Energy, energy is never lost.

You might be interested in
What linear speed must an earth satellite have to be in a circular orbit at an altitude of 159 km?
IgorLugansk [536]
Gravitational acceleration, g = GM/r^2. Additionally, for a satellite in a circular orbit, g = v^2/r

Where, G = Gravitational constant, M = Mass of earth, r = distance from the center of the earth to the satellite, v = linear speed of the satellite.

Equating the two expressions;
v^2/r = GM/r^2
v = Sqrt (GM/r);
But GM = Constant = 398600.5 km^3/sec^2
r = Altitude+Radius of the earth = 159+6371 = 6530 km

Substituting;
v = Sqrt (398600.5/6530) = 7.81 km/sec = 781 m/s
8 0
4 years ago
Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 23.5 m above water wit
Elodia [21]

As stated in the statement, we will apply energy conservation to solve this problem.

From this concept we know that the kinetic energy gained is equivalent to the potential energy lost and vice versa. Mathematically said equilibrium can be expressed as

\Delta KE = \Delta PE

\frac{1}{2}mv_f^2-\frac{1}{2} mv_0^2 = mgh_2-mgh_1

Where,

m = mass

v_{f,i} = initial and final velocity

g = Gravity

h = height

As the mass is tHe same and the final height is zero we have that the expression is now:

\frac{1}{2}v_f^2-\frac{1}{2} v_0^2 = gh_2

\frac{1}{2} (v_f^2-v_0^2) = gh_2

(v_f^2-v_0^2) = 2gh_2

v_f = \sqrt{2gh_2+v_0^2}

v_f = \sqrt{2(9.8)(23.5)+13.6^2}

v_f = 25.4m/s

7 0
3 years ago
Concept Simulation 20.4 provides background for this problem and gives you the opportunity to verify your answer graphically. Ho
77julia77 [94]

Answer:

The time constant is 1.049.

Explanation:

Given that,

Charge q{t}= 0.65 q_{0}

We need to calculate the time constant

Using expression for charging in a RC circuit

q(t)=q_{0}[1-e^{-(\dfrac{t}{RC})}]

Where, \dfrac{t}{RC} = time constant

Put the value into the formula

0.65q_{0}=q_{0}[1-e^{-(\dfrac{t}{RC})}]

1-e^{-(\dfrac{t}{RC})}=0.65

e^{-(\dfrac{t}{RC})}=0.35

-\dfrac{t}{RC}=ln (0.35)

-\dfrac{t}{RC}=-1.049

\dfrac{t}{RC}=1.049

Hence, The time constant is 1.049.

6 0
3 years ago
PLS SOMEONE HELP QUICK
SVETLANKA909090 [29]

Answer:

the rates of rock formation are similar. i could be wrong tho.....

Explanation:

6 0
3 years ago
Read 2 more answers
A 65.0-kg runner has a speed of 5.20 m/s at one instant dur- ing a long-distance event. (a) What is the runner’s kinetic energy
vladimir2022 [97]

Answer:

a)KE=878.8 J

b)W=2636.4 J      

Explanation:

Given that

mass ,m = 65 kg

Initial speed ,u = 5.2 m/s

a)

We know that kinetic energy KE is given as follows

KE=\dfrac{1}{2}mu^2

m=mass

u=velocity

Now by putting the values in the above equation we get

KE=\dfrac{1}{2}\times 65\times 5.2^2\ J

KE=878.8 J

b)

We know that

Work done by all forces = Change in the kinetic energy

The final velocity , v= 2 u = 2 x 5.2 m/s

v= 10.4 m/s

W=\dfrac{1}{2}mv^2-\dfrac{1}{2}mu^2

Now by putting the values in the above equation we get

W=\dfrac{1}{2}\times 65\times 10.4^2-\dfrac{1}{2}\times 65\times 5.2^2\ J

W=2636.4 J

a)KE=878.8 J

b)W=2636.4 J

8 0
3 years ago
Other questions:
  • An 68 kg man on ice skates is pushing his 34 kg son, also on skates, with a force of 115 N. Together, they move across the ice s
    5·1 answer
  • ---&gt;Two aircraft P and Q are flying at the same speed. 300 m/s, The direction along which P is flying is at right angles to t
    10·1 answer
  • What is the primary energy source that drives earth’s water cycle between the atmosphere, oceans and land?
    12·1 answer
  • A railroad car of mass M moving at a speed v1 collides and couples with two coupled railroad cars, each of the same mass M and m
    15·1 answer
  • The thermal energy of a system is the ____________ kinetic energy of its particles.
    11·1 answer
  • You drop some ice and notice a piece appears to slide across the kitchen floor without slowing down (until it hits the wall). wh
    9·2 answers
  • What is the difference between speed and velocity?
    14·1 answer
  • 10-kg box is sliding across an ice rink at 10 m/s . A skater exerts a constant force of 10 N against it. How long will it take f
    12·1 answer
  • Can you hit the monkey at a fast speed with gravity on?
    11·1 answer
  • Calculate the change in the kinetic energy (KE) of the bottle when the mass is increased. Use the formula
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!