Answer:
An object responds to a force by tending to move in the direction of that force
Explanation:
The inertia of a body can be defined with the help of Newton's second law
F = m a
Where F is the applied force, a is the acceleration of the body and m is the mass
the force and the acceleration are vectors that point in the same direction and m is a scalar constant that relates the two vectors, this scalar constant is called masses and it measures the resistance of the bodies to the change of motion.
From the previous statement we see that the statement that best describes inertia is:
An object responds to force by tending to move in the direction of the force.
If a coin is dropped at a relatively low altitude, it's acceleration remains constant. However, if the coin is dropped at a very high altitude, air resistance will have a significant effect. The initial acceleration of the coin will be the greatest. As it falls down, air resistance will counteract the weight of the coin. So, the acceleration will decrease. Although the acceleration decreases, the coin still accelerates, that is why it falls faster. When the air resistance fully counters the weight of the coin, the acceleration will become zero and the coin will fall at a constant speed (terminal velocity). So, the answer should be, The acceleration decreases until it reaches 0. The closest answer is.
a. The acceleration decreases.
Answer:
heat it up to above 176f or apply alternating current
Explanation:
You have selected the correct answer and blobbed over it with your pencil.
I assume you must have looked at Saturn's average distance, found 1427,
divided that number by 6, got 237 and change, then looked at the others,
and found that 228 was the only one that's anywhere close.
Answer:
The answer to your question is va = 8 cm/s, vb = 12.5 cm/s, a = 9 cm/s²
Explanation:
Data
Ta = 0.125 s
Tb = 0.08 s
Δtab = 0.5 s
distance = 1 cm
Process
1.- Calculate va
va = 1/0.125 = 8 cm/s
vb = 1/0.08 = 12.5 cm/s
2.- Calculate Δv
Δv = 12.5 - 8
Δv = 4.5 cm/s
3.- Calculate acceleration
a = Δv / Δt
a = 4.5/0.5
a = 9 cm/s²