Answer:
h = 2.49 [m]
Explanation:
In order to solve this problem we must use the definition of potential energy, which tells us that energy is equal to the product of mass by gravity by height.
The potential energy can be calculated by means of this equation:
Ep = m*g*h
where:
Ep = potential energy = 980 [J]
m = mass = 40 [kg]
g = gravity acceleration = 9.81 [m/s^2]
h = elevation [m]
Now replacing:
980 = 40*9.81*h
h = 2.49 [m]
Answer :
.
Explanation:
It is given that,
Electric field strength, 
We know that,
Charge of electron, 
Mass of electron, 
From the definition of electric field,
...............(1)
According to Newton's second law, F = ma..........(2)
From equation (1) and (2)




or

So, the horizontal component of acceleration of an electron is
.
Hence, it is the required solution.
Answer:
F = 36 N
Explanation:
Given that,
Charge, q₁ = +8 μC
Charge, q₂ = -5 μC
The distance between the charges, r = 10 cm = 0.1 m
We need to find the magnitude of the electrostatic force. The formula for the electrostatic force is given by :

So, the magnitude of the electrostatic force is 36 N.