Answer:
Explained
Explanation:
public int dimension(int [][]a2d,int nElements)
{
int count = 0;
for(int i = 0;i < a2d.length ; i++)
{
count = count + a2d[i].length;
}
return count;
}
The time constant determines how long it takes for the capacitor to charge.
To find the answer, we have to know more about the time constant of the capacitor.
<h3>What is time constant?</h3>
- The time it takes for a capacitor to discharge 36.8% of its charge in a discharging circuit or charge up to 63.2% of its maximum capacity in a charging circuit, given that it has no initial charge, is the time constant of a resistor-capacitor series combination.
- The circuit's reaction to a step-up (or constant) voltage input is likewise determined by the time constant.
- As a result, the time constant determines the circuit's cutoff frequency.
Thus, we can conclude that, the time constant determines how long it takes for the capacitor to charge.
Learn more about the time constant here:
brainly.com/question/17050299
#SPJ4
Answer:
Explanation:
The image is real light rays actually focus at the image location). As the object moves towards the mirror the image location moves further away from the mirror and the image size grows (but the image is still inverted).
Answer:
68.585m/sec , 779.1 N
Explanation:
To feel weightless, centripetal acceleration must equal g (9.8m/sec^2). The accelerations then cancel.
From centripetal motion.
F =( mv^2)/2
But since we are dealing with weightlessness
r = 480m
g = 9.8m/s^2
M also cancels, so forget M.
V^2 = Fr
V = √ Fr
V =√ (9.8 x 480) = 4704
= 68.585m/sec.
b) Centripetal acceleration = (v^2/2r) = (68.585^2/960) = 4704/960
= 4.9m/sec^2.
Weight (force) = (mass x acceleration) = 159kg x (g - 4.9)
159kg × ( 9.8-4.9)
159kg × 4.9
= 779.1N