Answer:
(i) The angular speed of the small metal object is 25.133 rad/s
(ii) The linear speed of the small metal object is 7.54 m/s.
Explanation:
Given;
radius of the circular path, r = 30 cm = 0.3 m
number of revolutions, n = 20
time of motion, t = 5 s
(i) The angular speed of the small metal object is calculated as;

(ii) The linear speed of the small metal object is calculated as;

Answer:
31677.2 lb
Explanation:
mass of hammer (m) = 3.7 lb
initial velocity (u) = 5.8 ft/s
final velocity (v) = 0
time (t) = 0.00068 s
acceleration due to gravity (g) 32 ft/s^{2}
force = m x ( a + g )
where
- m is the mass = 3.7 lb
- g is the acceleration due to gravity = 32 ft/s^{2}
- a is the acceleration of the hammer
from v = u + at
a = (v-u)/ t
a = (0-5.8)/0.00068 = -8529.4 ( the negative sign showa the its decelerating)
we can substitute all required values into force= m x (a+g)
force = 3.7 x (8529.4 + 32) = 31677.2 lb
The first thing to do is to define the origin of the coordinate system as the point at which the moped journey begins.
Then, you must write the position vector:
r = -3j + 4i + 3j
Rewriting
r = 4i
To go back to where you started, you must go
d = -4i
That is to say, must travel a distance of 4Km to the west.
Answer
West, 4km.
Answer:
Final velocity of the block = 2.40 m/s east.
Explanation:
Here momentum is conserved.
Initial momentum = Final momentum
Mass of bullet = 0.0140 kg
Consider east as positive.
Initial velocity of bullet = 205 m/s
Mass of Block = 1.8 kg
Initial velocity of block = 0 m/s
Initial momentum = 0.014 x 205 + 1.8 x 0 = 2.87 kg m/s
Final velocity of bullet = -103 m/s
We need to find final velocity of the block( u )
Final momentum = 0.014 x -103+ 1.8 x u = -1.442 + 1.8 u
We have
2.87 = -1.442 + 1.8 u
u = 2.40 m/s
Final velocity of the block = 2.40 m/s east.
The energy transformations that occur as you coast down long hill on a bicycle, including the brakes to make the bike stop at the bottom, is that at the top of the hill you have high GPE AND LOW KE, on your way down you have HIGH KE AND LOW GPE, and at the bottom you have thermal energy due to the stop of the brakes.
the law of conversation of energy and describe the energy transformations that occur as you coast down a long hill on a bicycle and then apply the brakes to make the bike stop at the bottom.