Hello there!
Essentially, a control variable is what is kept the same throughout the experiment, and it is not of primary concern in the experimental outcome. Any change in a control variable in an experiment would invalidate the correlation of dependent variables (DV) to the independent variable (IV), thus skewing the results.
Answer:
The answer is A. on edgen.
Explanation:
A. adding in the boxes an arrow that points from Qh to Qc
A motor is built to use all those things and produce mechanical energy.
The best use of an atomic model to explain the charge of the particles in Thomson's beams is:
<u>An atom's smaller negative particles are at a distance from the central positive particles, so the negative particles are easier to remove.</u>
<u>Explanation:</u>
In Thomson's model, an atom comprises of electrons that are surrounded by a group of positive particles to equal the electron's negative particles, like negatively charged “plums” that are surrounded by positively charged “pudding”.
Atoms are composed of a nucleus that consists of protons and neutrons . Electron was discovered by Sir J.J.Thomson. Atoms are neutral overall, therefore in Thomson’s ‘plum pudding model’:
-
atoms are spheres of positive charge
- electrons are dotted around inside
Thomson's conclusions made him to propose the Rutherford model of the atom where the atom had a concentrated nucleus of positive charge and also large mass.
Answer:
Increases, increases
Explanation:
The current is directly proportional to the voltage and inversely proportional to the resistance. The implication of this is that, whenever the voltage is increased, the current increases simultaneously. On the other hand, if the resistance is increased, the current will decrease accordingly and vice versa.
Recall that power is given by P= V^2/R where;
P= power, V= voltage and R= resistance
We can see that power and resistance are inversely related hence decreasing the resistance increases the power output of the lightbulb.