R2^ 2 / R1 ^2 = g1 / g2 = 38
<span>R2 = R1 x √38 = 6.1644* R1 </span>
<span>R2 = 6.1644 x 6378 000 = 39316632.5 m</span>
It depends on your definition of “ancient.” Radiometric dating using Carbon-14 can reliably date back to about 50,000 years, uranium-lead or lead-lead dating can date back multiple millions, potassium-argon dating can reach 1.5 billion, and rubidium-strontium can reach 50 billion (nearly 4x the age of the universe). It depends on the context in which this question is being asked.
Answer:
Ф = 2.179 eV
Explanation:
This exercise has electrons ejected from a metal, which is why it is an exercise on the photoelectric effect, which is explained assuming the existence of energy quanta called photons that behave like particles.
E = K + Ф
the energy of the photons is given by the Planck relation
E = h f
we substitute
h f = K + Ф
Ф= hf - K
the speed of light is related to wavelength and frequency
c = λ f
f = c /λ
Φ =
let's reduce the energy to the SI system
K = 0.890 eV (1.6 10⁻¹⁹ J / 1eV) = 1.424 10⁻¹⁹ J
calculate
Ф = 6.63 10⁻³⁴ 3 10⁸/405 10⁻⁹ -1.424 10⁻¹⁹
Ф = 4.911 10⁻¹⁹ - 1.424 10⁻¹⁹
Ф = 3.4571 10⁻¹⁹ J
we reduce to eV
Ф = 3.4871 10⁻¹⁹ J (1 eV / 1.6 10⁻¹⁹ J)
Ф = 2.179 eV
The kinetic energy is
.
Explanation:
The kinetic energy of an object is given by

where
K is the kinetic energy of the object
m is the mass of the object
v is the speed of the object
For the comet in this problem, we have:
is its mass
is the speed
First, we convert the speed from km/h to m/s:

Therefore, the kinetic energy of the comet is

Learn more about kinetic energy here:
brainly.com/question/6536722
#LearnwithBrainly