Take into account that density and relative density are given by:
Take into account that the volume associated to each of the given sustances in the table is determined by the Level Difference (because it is the change in the volume of the water of the recipient in which the substance is immersed).
The density of water in kg/m^3 is 1000 kg/m^3.
Due to the density must be given in kg/m^3, it is necessary to express the volumes of the table in m^3 and mass in kg, then, consider the following conversion factor:
1 m^3 = 1000000 ml
1 kg = 1000 g
Then, you obtain the following results:
Brass:
Cooper:
I think the correct answer would be D. The tap water in the experiment is one the three test conditions of the independent variable, the type of water. The independent variable in a experiment is the one being manipulated or the one being changed. In this case, it is the type of water.
Explanation:
A one-kilogram mass is still a one-kilogram(as mass is an intrinsic property of the object) but the downward force due to gravity, and therefore it's weight, is only one-sixth of what the object would have on the Earth. So man of mass 180 pounds weights only about 30 pounds-force when visiting the moon
hope it help..... pls add me as brainlist.
Have a nice day
They did not believed Galileo's discoveries because religiouse reasons the preast said that all the bible is true but Galileo despised it.
Answer:
Satellite D has a mass (kg) of 500 and the distance from Earth (km) is 320.
Explanation:
The universal law of gravitation states that the force between two objects in the universe is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.
We have to choose the satellite having greatest gravitational force with earth. In all options the distance from the earth is same i.e. 320 km. So, we have to select the satellite having maximum mass because the mass of the earth is constant.
Hence, the correct option is (D) " Satellite D has a mass (kg) of 500 and the distance from Earth (km) is 320 ".