<span>No. Work is not done if you carry a book across the room
at a constant velocity?
The force applied is perpendicular to the direction of motion. (C)</span>
Answer:
Sa
Explanation:
Spiral Galaxies -
It is a disk shaped galaxies which have spiral structure , is refereed to as spiral galaxies .
According to Hubble , these galaxies are classified as Sa , Sb , Sc .
Where ,
Sa - have the structure , which is bulged from the central portion , along with a tightly wrapped spiral structure .
Sb - have a lesser bulge and the spiral is looser .
Sc - It has very weak bulge with the open spiral structure .
Hence , from the question ,
The given information is about the Sa .
The conservation of momentum P states that the amount of momentum remains constant when there are not external forces.
We don't have external forces, so:

Where:
- mb is the mass of the bowling ball
- mp the mass of the pin
the initial velocities of the bowling ball and the pin.
the final velocities of the bowling ball and the pin.
Solving for v0b:

<h2>R/ The original velocity of the ball was 5.71 m/s.</h2>
I’ll refer to electromagnetic radiation as EMR.
Visible light is a very small subset of EMR. Many other ranges like infrared, ultraviolet, or gamma must be detected by special equipment.
EMR is what makes up light, and as we know from any high school physics class, light exhibits both particle-like properties (photoelectric effect and Compton scattering) and wave-like properties (refraction, diffraction, double-slit & single-slit experiment).
EMR can travel without a medium, like the vast emptiness of space. It can also travel with a medium. It can transmit through various materials albeit at a slower speed, like water, earth’s atmosphere, glass etc.
The propagation speed of EMR in space is 3x10^8 m/s, which is a speed unattainable by any of our current means of transportation. I would say that’s quite fast.
We will apply:
Q = mcΔT; where Q is the heat, m is the mass, c is the specific heat capacity and ΔT is the temperature change.
30,000 = 390 x 3.9 x ΔT
ΔT = 19.7 °C
The temperature change is of 19.7 °C.