Answer:
The correct option is d ( Neither A nor B)
Explanation:
Technician A made 2 mistakes in his statement.Firstly the tire is self supporting not self sealing.
Secondly, this tire does not provide permanent sealing of punctured area option a is incorrect.
This self-supporting tire after being affected with complete air leakage can temporarily bear the load of the car and avoid rolling over a distance of 80 km at a maximum speed of 55 mph. Here is what technician B suggested incorrectly as the tire after being.Here the technician B suggested incorrectly as the tire after being affected with puncture can not travel at any speed so option B is wrong
Since option a and b are incorrect and c is invalid.
Answer with Explanation:
The capillary rise in 2 parallel plates immersed in a liquid is given by the formula

where
is the surface tension of the liquid
is the contact angle of the liquid
is density of liquid
'g' is acceleratioj due to gravity
'd' is seperation between thje plates
Part a) When the liquid is water:
For water and glass we have
Applying the values we get

Part b) When the liquid is mercury:
For mercury and glass we have
Applying the values we get

The negative sign indicates that there is depression in mercury in the tube.
Answer: Both Technicians
Explanation:
When testing a spring break it is advisable to Step on and off the brake, with the engine off, the parking brake knob is expected to pop out when air pressure falls between 20-40 psi.
Go under the vehicle and pull the spring brakes.
Turn on the engine back and pump the brake pedal down to the floor. To test the spring breaks
The air flow necessary to remain at the lower explosive level is 4515. 04cfm
<h3>How to solve for the rate of air flow</h3>
First we have to find the rate of emission. This is solved as
2pints/1.5 x 1min
= 2/1.5x60
We have the following details
SG = 0.71
LEL = 1.9%
B = 10% = 0.1 a constant
The molecular weight is given as 74.12
Then we would have Q as
403*100*0.2222 / 74.12 * 0.71 * 0.1
= Q = 4515. 04
Hence we can conclude that the air flow necessary to remain at the lower explosive level is 4515. 04cfm
Read more on the rate of air flow on brainly.com/question/13289839
#SPJ1