1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
EleoNora [17]
3 years ago
5

An equal-tangent sag vertical curve (with a negative initial and a positive final grade) is designed for 55 mi/h. The PVI is at

station 240 + 00 and elevation 122 ft. The PVT is at station 242 + 30 and elevation 127.75 ft. What is the station and elevation of the lowest point on the curve?
Engineering
1 answer:
Varvara68 [4.7K]3 years ago
3 0

Answer:

The lowest point of the curve is at 239+42.5 ft where elevation is 124.16 ft.

Explanation:

Length of curve is given as

L=2(PVT-PVI)\\L=2(242+30-240+00)\\L=2(230)\\L=460 ft

G_2 is given as

G_2=\frac{E_{PVT}-E_{PVI}}{0.5L}\\G_2=\frac{127.5-122}{0.5*460}\\G_2=0.025=2.5 \%

The K value is given from the table 3.3 for 55 mi/hr is 115. So the value of A is given as

A=\frac{L}{K}\\A=\frac{460}{115}\\A=4

A is given as

-G_1=A-G_2\\-G_1=4.0-2.5\\-G_1=1.5\\G_1=-1.5\%

With initial grade, the elevation of PVC is

E_{PVC}=E_{PVI}+G_1(L/2)\\E_{PVC}=122+1.5%(460/2)\\E_{PVC}=125.45 ft\\

The station is given as

St_{PVC}=St_{PVI}-(L/2)\\St_{PVC}=24000-(230)\\St_{PVC}=237+70\\

Low point is given as

x=K \times |G_1|\\x=115 \times 1.5\\x=172.5 ft

The station of low point is given as

St_{low}=St_{PVC}-(x)\\St_{low}=23770+(172.5)\\St_{low}=239+42.5 ft\\

The elevation is given as

E_{low}=\frac{G_2-G_1}{2L} x^2+G_1x+E_{PVC}\\E_{low}=\frac{2.5-(-1.5)}{2*460} (1.72)^2+(-1.5)*(1.72)+125.45\\E_{low}=124.16 ft

So the lowest point of the curve is at 239+42.5 ft where elevation is 124.16 ft.

You might be interested in
EggzOG43199 <br><br><br><br> :) it has to be more than 20 characters so I'm just saying this
lawyer [7]

Answer:

giberishgiberishgiberishgiberishgiberishgiberishgiberishgiberishgiberish

Explanation:

i have no idea what the question is but do u 4 real need help?

8 0
3 years ago
Given the inherent costs of regulation it is safe to say that there is always a negative economic impact associated with regulat
Alexus [3.1K]

the answer is true.                                     <u>                    </u>                                                              

6 0
2 years ago
Omg I just got 17/25 questions wrong using this on an Ag test , but got 100’s every time on health
Fudgin [204]

Answer:

sorry im answering questions for the points cuz im built dfferent

Explanation:

5 0
3 years ago
Read 2 more answers
When do design engineers start on the design improvement step?
ArbitrLikvidat [17]

Answer:

  as soon as there is a design to improve

Explanation:

As a design engineer, I started on the "design improvement" step as soon as I had an initial conceptual design.

__

Then, I started that step again when my boss told me, "make it better."

_____

The more interesting question is, "when do you <em>stop</em> the design improvement step?" (Judging by the constant barrage of software updates, that answer is, "never.")

8 0
3 years ago
A hydraulic jump is induced in an 80 ft wide channel.The water depths on either side of the jump are 1 ft and 10 ft.Please calcu
krek1111 [17]

Answer:

a) 42.08 ft/sec

b) 3366.33 ft³/sec

c) 0.235

d) 18.225 ft

e) 3.80 ft

Explanation:

Given:

b = 80ft

y1 = 1 ft

y2 = 10ft

a) Let's take the formula:

\frac{y2}{y1} = \frac{1}{5} * \sqrt{1 + 8f^2 - 1}

10*2 = \sqrt{1 + 8f^2 - 1

1 + 8f² = (20+1)²

= 8f² = 440

f² = 55

f = 7.416

For velocity of the faster moving flow, we have :

\frac{V_1}{\sqrt{g*y_1}} = 7.416

V_1 = 7.416 *\sqrt{32.2*1}

V1 = 42.08 ft/sec

b) the flow rate will be calculated as

Q = VA

VA = V1 * b *y1

= 42.08 * 80 * 1

= 3366.66 ft³/sec

c) The Froude number of the sub-critical flow.

V2.A2 = 3366.66

Where A2 = 80ft * 10ft

Solving for V2, we have:

V_2 = \frac{3666.66}{80*10}

= 4.208 ft/sec

Froude number, F2 =

\frac{V_2}{g*y_2} = \frac{4.208}{32.2*10}

F2 = 0.235

d) El = \frac{(y_2 - y_1)^3}{4*y_1*y_2}

El = \frac{(10-1)^3}{4*1*10}

= \frac{9^3}{40}

= 18.225ft

e) for critical depth, we use :

y_c = [\frac{(\frac{3366.66}{80})^2}{32.2}]^1^/^3

= 3.80 ft

7 0
3 years ago
Read 2 more answers
Other questions:
  • (20pts) Air T[infinity] = 10 °C and u[infinity] = 100 m/s flows over a flat plate. Assume that the density of air is 1.0 kg/m3 a
    6·1 answer
  • a valueable preserved biological specimen is weighed by suspeding it from a spring scale. it weighs 0.45 N when it is suspendedi
    11·1 answer
  • Joseph wants to practice architecture. Which compulsory assessment administered by NCARB does he need to complete?
    10·1 answer
  • Suppose you are implementing a relational employee database, where the database is a list of tuples formed by the names, the pho
    14·1 answer
  • If a toy car covers a distance of 42m in 7sec, what is it’s speed
    9·2 answers
  • Complete the following sentence.
    13·1 answer
  • 1. Given: R= 25 , E = 100 V<br> Solve for I
    5·1 answer
  • . Bơm kiểu piston tác dụng đơn có áp suất p=0,64 Mpa và lưu lượng Q=3,5 l/s. Xác định tốc độ quay của trục bơm và công suất của
    7·1 answer
  • Which of the following addresses future implications of design and process decisions?
    5·1 answer
  • The source term will affect all algebraic equations.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!