1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anvisha [2.4K]
3 years ago
5

A 50 Hz, four pole turbo-generator rated 100 MVA, 11 kV has an inertia constant of 8.0 MJ/MVA. (a) Find the stored energy in the

rotor at synchronous speed. (b) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration, neglecting mechanical and electrical losses. (c) If the acceleration calculated in part(b) is maintained for 10 cycles, find the change in torque angle and rotor speed in revolutions per minute at the end of this period.
Engineering
1 answer:
raketka [301]3 years ago
4 0

Given Information:

Frequency = f = 60 Hz

Complex rated power = G = 100 MVA

Intertia constant = H = 8 MJ/MVA

Mechanical power = Pmech = 80 MW

Electrical power = Pelec = 50 MW

Number of poles = P = 4

No. of cycles = 10

Required Information:

(a) stored energy = ?

(b) rotor acceleration = ?

(c) change in torque angle = ?

(c) rotor speed = ?

Answer:

(a) stored energy = 800 Mj

(b) rotor acceleration = 337.46 elec deg/s²

(c) change in torque angle (in elec deg) = 6.75 elec deg

(c) change in torque angle (in rmp/s) = 28.12 rpm/s

(c) rotor speed = 1505.62 rpm

Explanation:

(a) Find the stored energy in the rotor at synchronous speed.

The stored energy is given by

E = G \times H

Where G represents complex rated power and H is the inertia constant of turbo-generator.

E = 100 \times 8 \\\\E = 800 \: MJ

(b) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration, neglecting mechanical and electrical losses.

The rotor acceleration is given by

$ P_a = P_{mech} - P_{elec} = M \frac{d^2 \delta}{dt^2}  $

Where M is given by

$ M = \frac{E}{180 \times f} $

$ M = \frac{800}{180 \times 50} $

M = 0.0889 \: MJ \cdot s/ elec \: \: deg

So, the rotor acceleration is

$ P_a = 80 - 50 = 0.0889 \frac{d^2 \delta}{dt^2}  $

$  30 = 0.0889 \frac{d^2 \delta}{dt^2}  $

$   \frac{d^2 \delta}{dt^2} = \frac{30}{0.0889}  $

$   \frac{d^2 \delta}{dt^2} = 337.46 \:\: elec \: deg/s^2 $

(c) If the acceleration calculated in part(b) is maintained for 10 cycles, find the change in torque angle and rotor speed in revolutions per minute at the end of this period.

The change in torque angle is given by

$ \Delta  \delta = \frac{1}{2} \cdot \frac{d^2 \delta}{dt^2}\cdot (t)^2 $

Where t is given by

1 \: cycle = 1/f = 1/50 \\\\10 \: cycles = 10/50 = 0.2  \\\\t = 0.2 \: sec

So,

$ \Delta  \delta = \frac{1}{2} \cdot 337.46 \cdot (0.2)^2 $

$ \Delta  \delta = 6.75 \: elec \: deg

The change in torque in rpm/s is given by

$ \Delta  \delta = \frac{337.46 \cdot 60}{2 \cdot 360\circ  }   $

$ \Delta  \delta =28.12 \: \: rpm/s $

The rotor speed in revolutions per minute at the end of this period (10 cycles) is given by

$ Rotor \: speed = \frac{120 \cdot f}{P}  + (\Delta  \delta)\cdot t  $

Where P is the number of poles of the turbo-generator.

$ Rotor \: speed = \frac{120 \cdot 50}{4}  + (28.12)\cdot 0.2  $

$ Rotor \: speed = 1500  + 5.62  $

$ Rotor \: speed = 1505.62 \:\: rpm

You might be interested in
Air at atmospheric pressure and at 300K flows with a velocity of 1.5m/s over a flat plate. The transition from laminar to turbul
Savatey [412]

Answer:3.47 m

Explanation:

Given

Temperature(T)=300 K

velocity(v)=1.5 m/s

At 300 K

\mu =1.846 \times 10^{-5} Pa-s

\rho =1.77 kg/m^3

And reynold's number is given by

Re.=\frac{\rho v\time x}{\mu }

5\times 10^5=\frac{1.77\times 1.5\times x}{1.846\times 10^{-5}}

x=\frac{5\times 10^5\times 1.846\times 10^{-5}}{1.77\times 1.5}

x=3.47 m

5 0
3 years ago
Steam at 1 MPa, 300 C flows through a 30 cm diameter pipe with an average velocity of 10 m/s. The mass flow rate of this steam i
stealth61 [152]

Answer:

\dot m = 2.74 kg/s

Explanation:

given data:

pressure 1 MPa

diameter of pipe  =  30 cm

average velocity = 10 m/s

area of pipe= \frac[\pi}{4}d^2

                 = \frac{\pi}{4} 0.3^2

A = 0.070 m2

WE KNOW THAT mass flow rate is given as

\dot m = \rho A v

for pressure 1 MPa, the density of steam is = 4.068 kg/m3

therefore we have

\dot m = 4.068 * 0.070* 10

\dot m = 2.74 kg/s

7 0
3 years ago
Give five general principles involved in the process of sewage filtration?​
aleksandr82 [10.1K]

Answer:

Some general principles are given below in the explanation segment.

Explanation:

Sewage treatment seems to be a method to extract pollutants from untreated sewage, consisting primarily of domestic sewage including some solid wastes.

<u>The principles are given below:</u>

  • Unless the components throughout the flow stream become greater than the ports or even the gaps throughout the filter layer, those holes would be filled as either a result of economic detection.
  • The much more common element of filtration would be the use of gravity to extract a combination.
  • Broadcast interception or interference.  
  • Inertial influence.
  • Sieving seems to be an excellent method to distinguish particulates.

8 0
3 years ago
Answer true or false 3.Individual people decide what will be produced in a command<br> oconomy
Pie

Answer:

False

Explanation:

The government decides the productions.

7 0
3 years ago
Read 2 more answers
The brakes are being bled on a passenger vehicle with a disc/drum brake system. Technician A says that the drums should be remov
exis [7]

The brakes are being bled on a passenger vehicle with a disc/drum brake system is described in the following

Explanation:

1.Risk: Continued operation at or below Rotor Minimum Thickness can lead to Brake system failure. As the rotor reaches its minimum thickness, the braking distance increases, sometimes up to 4 meters. A brake system is designed to take kinetic energy and transfer it into heat energy.

2.Since the piston needs to be pushed back into the caliper in order to fit over the new pads, I do open the bleeder screw when pushing the piston back in. This does help prevent debris from traveling back through the system and contaminating the ABS sensors

3.There are three methods of bleeding brakes: Vacuum pumping. Pressure pumping. Pump and hold.

4,Brake drag is caused by the brake pads or shoes not releasing completely when the brake pedal is released. ... A worn or corroded master cylinder bore causes excess pedal effort resulting in dragging brakes. Brake Lines and Hoses: There may be pressure trapped in the brake line or hose after the pedal has been released.

4 0
3 years ago
Other questions:
  • Assuming the torsional yield strength of a compression spring is 0.43Sut and the maximum shear stress is equal to 434MPa. What i
    9·1 answer
  • What is flow energy? Do fluids at rest possess any flow energy?
    13·1 answer
  • Complete the following sentence.
    7·1 answer
  • Convert.46 to a percentage
    7·1 answer
  • Identify the different engineering activities/steps in the engineering design process for each steps,summarize in 1–3 sentences
    13·1 answer
  • Linus is using a calculator to multiply 5,426 and 30. He enters 5,426 x 300 by mistake. What can Linus do to correct his mistake
    7·1 answer
  • A(94,0,14) B(52,56,94) C(10,6,48) D(128,64,10)
    6·1 answer
  • 1. You should
    11·2 answers
  • Question text
    11·1 answer
  • It is acceptable to mix used absorbents.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!