1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anvisha [2.4K]
3 years ago
5

A 50 Hz, four pole turbo-generator rated 100 MVA, 11 kV has an inertia constant of 8.0 MJ/MVA. (a) Find the stored energy in the

rotor at synchronous speed. (b) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration, neglecting mechanical and electrical losses. (c) If the acceleration calculated in part(b) is maintained for 10 cycles, find the change in torque angle and rotor speed in revolutions per minute at the end of this period.
Engineering
1 answer:
raketka [301]3 years ago
4 0

Given Information:

Frequency = f = 60 Hz

Complex rated power = G = 100 MVA

Intertia constant = H = 8 MJ/MVA

Mechanical power = Pmech = 80 MW

Electrical power = Pelec = 50 MW

Number of poles = P = 4

No. of cycles = 10

Required Information:

(a) stored energy = ?

(b) rotor acceleration = ?

(c) change in torque angle = ?

(c) rotor speed = ?

Answer:

(a) stored energy = 800 Mj

(b) rotor acceleration = 337.46 elec deg/s²

(c) change in torque angle (in elec deg) = 6.75 elec deg

(c) change in torque angle (in rmp/s) = 28.12 rpm/s

(c) rotor speed = 1505.62 rpm

Explanation:

(a) Find the stored energy in the rotor at synchronous speed.

The stored energy is given by

E = G \times H

Where G represents complex rated power and H is the inertia constant of turbo-generator.

E = 100 \times 8 \\\\E = 800 \: MJ

(b) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration, neglecting mechanical and electrical losses.

The rotor acceleration is given by

$ P_a = P_{mech} - P_{elec} = M \frac{d^2 \delta}{dt^2}  $

Where M is given by

$ M = \frac{E}{180 \times f} $

$ M = \frac{800}{180 \times 50} $

M = 0.0889 \: MJ \cdot s/ elec \: \: deg

So, the rotor acceleration is

$ P_a = 80 - 50 = 0.0889 \frac{d^2 \delta}{dt^2}  $

$  30 = 0.0889 \frac{d^2 \delta}{dt^2}  $

$   \frac{d^2 \delta}{dt^2} = \frac{30}{0.0889}  $

$   \frac{d^2 \delta}{dt^2} = 337.46 \:\: elec \: deg/s^2 $

(c) If the acceleration calculated in part(b) is maintained for 10 cycles, find the change in torque angle and rotor speed in revolutions per minute at the end of this period.

The change in torque angle is given by

$ \Delta  \delta = \frac{1}{2} \cdot \frac{d^2 \delta}{dt^2}\cdot (t)^2 $

Where t is given by

1 \: cycle = 1/f = 1/50 \\\\10 \: cycles = 10/50 = 0.2  \\\\t = 0.2 \: sec

So,

$ \Delta  \delta = \frac{1}{2} \cdot 337.46 \cdot (0.2)^2 $

$ \Delta  \delta = 6.75 \: elec \: deg

The change in torque in rpm/s is given by

$ \Delta  \delta = \frac{337.46 \cdot 60}{2 \cdot 360\circ  }   $

$ \Delta  \delta =28.12 \: \: rpm/s $

The rotor speed in revolutions per minute at the end of this period (10 cycles) is given by

$ Rotor \: speed = \frac{120 \cdot f}{P}  + (\Delta  \delta)\cdot t  $

Where P is the number of poles of the turbo-generator.

$ Rotor \: speed = \frac{120 \cdot 50}{4}  + (28.12)\cdot 0.2  $

$ Rotor \: speed = 1500  + 5.62  $

$ Rotor \: speed = 1505.62 \:\: rpm

You might be interested in
Do all websites use the same coding to create?
Sonbull [250]

Answer:

yes.

Explanation:

because all websites use coding

6 0
3 years ago
How does the two-stroke Otto cycle differ from the four-stroke Otto cycle?
Digiron [165]

Answer:

Two stroke cycle                                               Four stroke cycle

1.Have on power stroke in one revolution.   1.have one power  

                                                                   stroke in two  revolution                                                                            

2.Complete the cycle in 2 stroke                 2.Complete the cycle in 4 stroke    

3.It have ports                                                3.It have vales

                                                                         

4.Greater requirement of cooling              4.Lesser requirement of cooling  

5.Less thermal efficiency                            5.High thermal efficiency

6.Less volumetric efficiency                       6.High volumetric efficiency    

7.Size of flywheel is less.                           7.Size of flywheel is more.

3 0
3 years ago
Write the following decorators and apply them to a single function (applying multiple decorators to a single function): 1. The f
natita [175]

Answer:

Complete question is:

write the following decorators and apply them to a single function (applying multiple decorators to a single function):

1. The first decorator is called strong and has an inner function called wrapper. The purpose of this decorator is to add the html tags of <strong> and </strong> to the argument of the decorator. The return value of the wrapper should look like: return “<strong>” + func() + “</strong>”

2. The decorator will return the wrapper per usual.

3. The second decorator is called emphasis and has an inner function called wrapper. The purpose of this decorator is to add the html tags of <em> and </em> to the argument of the decorator similar to step 1. The return value of the wrapper should look like: return “<em>” + func() + “</em>.

4. Use the greetings() function in problem 1 as the decorated function that simply prints “Hello”.

5. Apply both decorators (by @ operator to greetings()).

6. Invoke the greetings() function and capture the result.

Code :

def strong_decorator(func):

def func_wrapper(name):

return "<strong>{0}</strong>".format(func(name))

return func_wrapper

def em_decorator(func):

def func_wrapper(name):

return "<em>{0}</em>".format(func(name))

return func_wrapper

@strong_decorator

@em_decorator

def Greetings(name):

return "{0}".format(name)

print(Greetings("Hello"))

Explanation:

5 0
4 years ago
5) Calculate the LMC wal thickness of a pipe and tubing with OD as 35 + .05 and ID as 25 + .05 A) 4.95 B) 5.05 C) 10 D) 15.025
padilas [110]

Answer:

B) 5.05

Explanation:

The wall thickness of a pipe is the difference between the diameter of outer wall and the diameter of inner wall divided by 2. It is given by:

Thickness of pipe = (Outer wall diameter - Inner wall diameter) / 2

Given that:

Inner diameter = ID = 25 ± 0.05, Outer diameter = OD = 35 ± 0.05

Maximum outer diameter = 35 + 0.05 = 35.05

Minimum inner diameter = 25 - 0.05 = 24.95

Thickness of pipe = (maximum outer wall diameter - minimum inner wall diameter) / 2 = (35.05 - 24.95) / 2 = 5.05

or

Thickness = (35 - 25) / 2 + 0.05 = 10/2 + 0.05 = 5 + 0.05 = 5.05

Therefore the LMC wall thickness is 5.05

6 0
3 years ago
Read 2 more answers
Swing arm restraints are intended to prevent a vehicle from falling off a lift.
castortr0y [4]

The question is asking whether that statement is true or false. Options are;

A) True

B) False

This is about usage of Swing arm restraints.

<em><u>B) False</u></em>

There are different safety features that people employ when a vehicle is lifted. However, for this question, we will only talk about swing arm restraints.

  • Swing arm restraints are lifting restraint devices that are used to prevent a cars arms from shifting or going out of position after that car has been lifted and mounted.

  • This swing arm restraint does not prevent a vehicle from falling off a lift as it just helps to ensure that the swing arms that are unloaded basically maintain their position.

Read more at; brainly.com/question/17972874

4 0
3 years ago
Other questions:
  • There are two piston-cylinder systems that each contain 1 kg of an idea gas at a pressure of 300 kPa and temperature of 350 K. T
    8·1 answer
  • When using levers like scissors or hedge clippers, what can be done to increase the cutting force so that you don’t have to sque
    5·1 answer
  • Define the difference between elastic and plastic deformation in terms of the effect on the crystal lattice structure.
    5·1 answer
  • How many types of engineering specialist are there?
    14·1 answer
  • Who's your favorite singer and WHT your favorite song​
    11·2 answers
  • The organic acid, ACOOH, reacts reversibly with the alcohol BOH, to form the ester ACOOB according to the stoichiometric equatio
    6·1 answer
  • A long bone is subjected to a torsion test. Assume that the inner diameter is 0.375 in. and the outer diameter is 1.25 in., both
    14·1 answer
  • Any help is appreciated.
    7·1 answer
  • How does sea navigation work?
    11·1 answer
  • The complete stress distribution obtained by superposing the stresses produced by an axial force and a bending moment is correct
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!