Answer:
Because of the knowledge of <u>relative size</u>, it will be assumed that the smaller jetliner is farther away.
Explanation:
According to the theory of relative size, the distance that an object has to the viewing individual affects the perception of the individual regarding the size of the object.
As stated in this case, one of the jetliners is farther away from the other. Therefore, even if the jets are of equal size, the one that is at a greater distance is perceived to be smaller as it is at a greater viewing range. The one that is nearer to the individual seems bigger in comparison to the one farther away due to a closer viewing range.
Therefore, the jet that is nearer appears larger.
To know more about relative size, refer to:
brainly.com/question/19998265
#SPJ4
<h2>0.054×2.33×90</h2><h3>=0.11582×90</h3><h3>=11.3238</h3>
please mark this answer as brainlist
The Doppler effect is the term that best describes the change in frequency of waves when there is motion between the source of the waves and the observer. The correct option among all the options that are given in the question is the first option or option "a". I hope the answer helps you.
The angular speed of the playground ride is determined as 0.3 rad/s.
<h3>
What is angular speed?</h3>
Angular speed is the rate at which an object changes it angles which we measure in radians in a given time.
<h3>
Angular speed of the ride</h3>
The angular speed of the ride if the ride makes one complete revolution is calculated as follows;
ω = θ/t
ω = 2π/t
where;
- ω is angular speed of the ride
- t is time of motion of the ride
one complete revolution = 2π radians
ω = 2π/21
ω = 0.3 rad/s
Thus, the angular speed of the playground ride is determined as 0.3 rad/s.
Learn more about angular speed here: brainly.com/question/24158647
#SPJ1
The complete question is below;
A playground ride requires 21 seconds to make one complete revolution, what is angular speed of the ride in radian per second.
Answer:
884 balloons
Explanation:
Assume ideal gas, since temperature is constant, then the product of pressure and volume is constant.
So if pressures reduces from 100 to 1.2, the new volume would be

The spherical volume of each of the balloon of 30cm diameter (15 cm or 0.15 m in radius) is

The number of balloons that 12.5 m3 can fill in is
