Answer:
The ratio of the man's kinetic energy to that of the woman's kinetic energy is 0.629.
Explanation:
Given;
weight of the man, W = 700 N
Weight of the woman, W = 440 N
momentum is given by;

Kinetic energy of the man;

Momentum of the man is calculated as;

The kinetic energy of the woman is given by;

The momentum of the woman is given;

Since, momentum of the man = momentum of the woman


mass of the mas = 700 / 9.8 = 71.429
mass of the woman is = 440 / 9.8 = 44.898

Therefore, the ratio of the man's kinetic energy to that of the woman's kinetic energy is 0.629.
Answer:
the correct answer is c) 23 g
Explanation:
The heat lost by the runner has two parts: the heat absorbed by sweat in evaporation and the heat given off by the body
Q_lost = - Q_absorbed
The latent heat is
Q_absorbed = m L
The heat given by the body
Q_lost = M
ΔT
where m is the mass of sweat and M is the mass of the body
m L = M c_{e} ΔT
m = M c_{e} ΔT / L
let's replace
m = 90 3.500 1.8 / 2.42 10⁶
m = 0.2343 kg
reduced to grams
m = 0.2342 kg (1000g / 1kg)
m = 23.42 g
the correct answer is c) 23 g
Ok so here is the thing. It is necessary to introduce the atomic number Z into the following equation and the reason for that is that we are not working here with hydrogen (H). It will go like this:
<span>E=(2.18×10^-18 J)(Z^2 )|1/(ni^2 )-1/(nf^2 )| </span>
<span>E=(2.18×10^-18 J)(2^2 )|1/(6 ^2 )-1/(4 ^2 )|=3.02798×10^-19 J </span>
<span>After that we need to plug the E value calculated into the equation. Remember that the wavelength is always positive:</span>
<span>E=hc/λ 3.02798×10^-19 J=hc/λ λ=6.56×10^-7 m </span>
so 6.56×10^-7 m or better written 656 nm is in the visible spectrum