<span>A baseball speeds up as it falls through the air.
Yes. Forces on the balloon are unbalanced.
The balloon is speeding up, so we know that the downward force
of gravity is stronger than the upward force of air resistance.
A soccer ball is at rest on the ground.
No. The ball is not accelerating, so we know that the forces on it
are balanced.
The downward force of gravity on the ball and the upward force
of the ground are equal.
An ice skater glides in a straight line at a constant speed.
No. The skater's speed and direction are not changing, so he is not
accelerating. That tells us that the forces on him are balanced.
A bumper car hit by another car moves off at an angle.
Yes. The direction in which the car was moving changed.
That's acceleration, so we know that the forces on it are unbalanced,
at least at the moment of impact.
A balloon flies across the room when the air is released.
Yes. The balloon was not moving. But when the little nozzle was
opened, it started to zip around the room. So its speed changed.
And, as it goes bloozing around the room, its direction keeps changing too.
There's a whole lot of acceleration going on, so we know the forces on it
are unbalanced.</span>
Answer: 20.4m
Explanation:
Mass = 0.145kg
Initial velocity, Vi =20m/s
Initial kinetic energy K =1/2mv^2
Initial potential energy Ui = mgx = 0joules
: From conservation of energy,
Uf + Kf = Ui + Ki ( where f represent (final) )
Thus
mgXf + 0 = 0+1/2 mv^2
Xf = Vi^2/ 2g
= (20m/s) ^2/ 2(9.81m/s)^2
=20.4m
in a hypotonic solution like distilled water, a red blood cell would burst, because inside the cell has a higher solute concentration than outside.
In a hypertonic solution, there is a higher solute concentration on the outside of the cell than on the inside, causing the cell to shrivel.
i hope this helps
We are given that a 500 kg object is hanging from a spring. To determine the amount the spring is stretched we will use Hook's law, which states the following:

Where:

Since the object is hanging the only force acting on the spring is the weight of the object. The weight of the object is:

Where:

Plugging in the values we get:

Solving the operations:

Now we solve for "x" from Hook's law by dividing both sides by "k":

Now we plug in the known values:

Solving the operations:

Therefore, the spring is stretched by 5.4 meters.