1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scilla [17]
3 years ago
15

A block of ice weighing 20 lb is taken from the freezer where it was stored at -15"F. How many Btu of heat will be required to c

onvert the ice to water at 200°F?
Engineering
1 answer:
Rus_ich [418]3 years ago
8 0

Answer:

Heat required =7126.58 Btu.

Explanation:

Given that

Mass m=20 lb

We know that

1 lb =0.45 kg

So 20 lb=9 kg

m=9 kg

Ice at -15° F and we have to covert it at 200° F.

First ice will take sensible heat at up to 32 F then it will take latent heat at constant temperature and temperature will remain 32 F.After that it will convert in water and water will take sensible heat and reach at 200 F.

We know that

Specific heat for ice C_p=2.03\ KJ/kg.K

Latent heat for ice H=336 KJ/kg

Specific heat for ice C_p=4.187\ KJ/kg.K

We know that sensible heat given as

Q=mC_p\Delta T

Heat for -15F to 32 F:

Q=mC_p\Delta T

Q=9\times 2.03(32+15) KJ

Q=858.69 KJ

Heat for 32 Fto 200 F:

Q=mC_p\Delta T

Q=9\times 4.187(200-32) KJ

Q=6330.74 KJ

Total heat=858.69 + 336 +6330.74 KJ

Total heat=7525.43 KJ

We know that 1 KJ=0.947 Btu

So   7525.43 KJ=7126.58 Btu

So heat required to covert ice into water is 7126.58 Btu.

You might be interested in
A fluid at 300 K flows through a long, thin-walled pipe of 0.2-m diameter. The pipe is enclosed in a concrete casing that is of
andrew-mc [135]

Answer:

The correct answer is "1341.288 W/m".

Explanation:

Given that:

T₁ = 300 K

T₂ = 500 K

Diameter,

d = 0.2 m

Length,

l = 1 m

As we know,

The shape factor will be:

⇒ SF=\frac{2 \pi l}{ln[\frac{1.08 b }{d} ]}

By putting the value, we get

⇒       =\frac{2 \pi l}{ln[\frac{1.08\times 1}{0.2} ]}

⇒       =3.7258 \ l

hence,

The heat loss will be:

⇒ Q=SF\times K(T_2-T_1)

       =3.7258\times 1\times 1.8\times (500-300)

       =3.7258\times 1.8\times (200)

       =1341.288 \ W/m

3 0
3 years ago
Consider tests of an unswept wing that spans the wind tunnel and whose airfoil section is NACA 23012. Since the wing model spans
Dominik [7]

Answer:

Check the explanation

Explanation:

to know the lift per unit span (N/m) that is expected to be measured when the wing attack angle is 4°

as well as the corresponding section lift coefficient and die moment coefficient .

Kindly check the attached image below to see the step by step explanation to the above question.

3 0
3 years ago
A thick oak wall initially at 25°C is suddenly exposed to gases for which T =800°C and h =20 W/m2.K. Answer the following questi
Schach [20]

Answer:

a) What is the surface temperature, in °C, after 400 s?

   T (0,400 sec) = 800°C

b) Yes, the surface temperature is greater than the ignition temperature of oak (400°C) after 400 s

c) What is the temperature, in °C, 1 mm from the surface after 400 s?

   T (1 mm, 400 sec) = 798.35°C

Explanation:

oak initial Temperature = 25°C = 298 K

oak exposed to gas of temp = 800°C = 1073 K

h = 20 W/m².K

From the book, Oak properties are e=545kg/m³   k=0.19w/m.k   Cp=2385J/kg.k

Assume: Volume = 1 m³, and from energy balance the heat transfer is an unsteady state.

From energy balance: \frac{T - T_{\infty}}{T_i - T_{\infty}} = Exp (\frac{-hA}{evCp})t

Initial temperature wall = T_i

Surface temperature = T

Gas exposed temperature = T_{\infty}

6 0
4 years ago
Can you use isentropic efficiency for a non-adiabatic compressor?
vodomira [7]
Mark brainliest please!

Isothermal work will be less than the adiabatic work for any given compression ratio and set of suction conditions. The ratio of isothermal work to the actual work is the isothermal efficiency. Isothermal paths are not typically used in most industrial compressor calculations.

Compressors

Compressors are used to move gases and vapors in situations where large pressure differences are necessary.

Types of Compressor

Compressors are classified by the way they work: dynamic (centrifugal and axial) or reciprocating. Dynamic compressors use a set of rotating blades to add velocity and pressure to fluid. They operate at high speeds and are driven by steam or gas turbines or electric motors. They tend to be smaller and lighter for a given service than reciprocating machines, and hence have lower costs.

Reciprocating compressors use pistons to push gas to a higher pressure. They are common in natural gas gathering and transmission systems, but are less common in process applications. Reciprocating compressors may be used when very large pressure differences must be achieved; however, since they produce a pulsating flow, they may need to have a receiver vessel to dampen the pulses.

The compression ratio, pout over pin, is a key parameter in understanding compressors and blowers. When the compression ratio is below 4 or so, a blower is usually adequate. Higher ratios require a compressor, or multiple compressor stages, be used.

When the pressure of a gas is increased in an adiabatic system, the temperature of the fluid must rise. Since the temperature change is accompanied by a change in the specific volume, the work necessary to compress a unit of fluid also changes. Consequently, many compressors must be accompanied by cooling to reduce the consequences of the adiabatic temperature rise. The coolant may flow through a jacket which surrounds the housing with liquid coolant. When multiple stage compressors are used, intercooler heat exchangers are often used between the stages.

Dynamic Compressors

Gas enters a centrifugal or axial compressor through a suction nozzle and is directed into the first-stage impeller by a set of guide vanes. The blades push the gas forward and into a diffuser section where the gas velocity is slowed and the kinetic energy transferred from the blades is converted to pressure. In a multistage compressor, the gas encounters another set of guide vanes and the compression step is repeated. If necessary, the gas may pass through a cooling loop between stages.

Compressor Work

To evaluate the work requirements of a compressor, start with the mechanical energy balance. In most compressors, kinetic and potential energy changes are small, so velocity and static head terms may be neglected. As with pumps, friction can be lumped into the work term by using an efficiency. Unlike pumps, the fluid cannot be treated as incompressible, so a differential equation is required:

Compressor Work
Evaluation of the integral requires that the compression path be known - - is it adiabatic, isothermal, or polytropic?
uncooled units -- adiabatic, isentropic compression
complete cooling during compression -- isothermal compression
large compressors or incomplete cooling -- polytropic compression
Before calculating a compressor cycle, gas properties (heat capacity ratio, compressibility, molecular weight, etc.) must be determined for the fluid to be compressed. For mixtures, use an appropriate weighted mean value for the specific heats and molecular weight.

Adiabatic, Isentropic Compression

If there is no heat transfer to or from the gas being compressed, the porocess is adiabatic and isentropic. From thermodynamics and the study of compressible flow, you are supposed to recall that an ideal gas compression path depends on:

Adiabatic Path
This can be rearranged to solve for density in terms of one known pressure and substituted into the work equation, which then can be integrated.
Adiabatic Work
The ratio of the isentropic work to the actual work is called the adiabatic efficiency (or isentropic efficiency). The outlet temperature may be calculated from
Adiabatic Temperature Change
Power is found by multiplying the work by the mass flow rate and adjusting for the units and efficiency.
Isothermal Compression

If heat is removed from the gas during compression, an isothermal compression cycle may be achieved. In this case, the work may be calculated from:

http://facstaff.cbu.edu/rprice/lectures/compress.html
4 0
3 years ago
You work for a printing company, and you realize that your colleague sent incorrect price quotes to a client. You begin to write
xxTIMURxx [149]

Answer:

The sentence excerpted from the e-mail uses passive voice.  

Given the  purpose of your message, this voice is appropriate.

Explanation:

Because the objective is to remedy the situation a passive voice is great because it emphasizes the action and the object instead of the subject.

We want to emphasize the document and the incorrect information, not our colleague.

4 0
3 years ago
Other questions:
  • Not a characteristic property of ceramic material (a) high temperature stability (b) high mechanical strength (c) low elongation
    7·2 answers
  • The fan blades suddenly experience an angular acceleration of 2 rad/s2. If the blades are rotating with an initial angular veloc
    10·1 answer
  • The viscosity of the water was 2.3×10^−5lb⋅⋅s/ft^2 and the water density was 1.94 slugs/ft^3. Estimate the drag on an 88-ft diam
    13·1 answer
  • A Water Amusement Park parking lot charges $24.00 minimum fee to park for up to 8 hours. The meter charges an additional $3.25 p
    5·2 answers
  • Define volume flow rate of air flowing in a duct of area A with average velocity V.
    13·1 answer
  • Calculate total hole mobility if the hole mobility due to lattice scattering is 50 cm2 /Vsec and the hole mobility due to ionize
    5·2 answers
  • What are the advantages to a quality<br> saw?
    6·1 answer
  • Why is there an Engineering Process?
    15·2 answers
  • What major problems could you encounter in complex intersections?
    7·1 answer
  • Thermal energy measured by?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!