Answer:
41.5° C
Explanation:
Given data :
1025 steel
Temperature = 4°C
allowed joint space = 5.4 mm
length of rails = 11.9 m
<u>Determine the highest possible temperature </u>
coefficient of thermal expansion ( ∝ ) = 12.1 * 10^-6 /°C
Applying thermal strain ( Δl / l ) = ∝ * ΔT
( 5.4 * 10^-3 / 11.9 ) = 12.1 * 10^-6 * ( T2 - 4 )
∴ ( T2 - 4 ) = ( 5.4 * 10^-3 / 11.9 ) / 12.1 * 10^-6
hence : T2 = 41.5°C
Answer:
option c is correct
47.2%
Explanation:
given data
consisting of refrigerant = 134 a
volume V = 0.01 m³/kg
pressure P = 1MPa = 1000 kPa
to find out
quality of the R 134a
solution
we will get here value of volume Vf and Vv from pressure table 60 kpa to 3 Mpa for 1 Mpa of R134 a
that is
Vf = 0.0008701 m³/kg
Vv = 0.0203 m³/kg
so we will apply here formula that is
quality = (V - Vf) / (Vv - Vf) ............1
put here value
quality = (0.01 - 0.0008701 ) / ( 0.0203 - 0.0008701 )
quality = 0.4698
so quality is 47 %
SO OPTION C IS CORRECT
Answer:
solution in the picture attached
Explanation: