Answer:
The average thickness of the blubber is<u> 0.077 m</u>
Explanation:
Here, we want to calculate the average thickness of the Walrus blubber.
We employ a mathematical formula to calculate this;
The rate of heat transfer(H) through the Walrus blubber = dQ/dT = KA(T2-T1)/L
Where dQ is the change in amount of heat transferred
dT is the temperature gradient(change in temperature) i.e T2-T1
dQ/dT = 220 W
K is the conductivity of fatty tissue without blood = 0.20 (J/s · m · °C)
A is the surface area which is 2.23 m^2
T2 = 37.0 °C
T1 = -1.0 °C
L is ?
We can rewrite the equation in terms of L as follows;
L × dQ/dT = KA(T2-T1)
L = KA(T2-T1) ÷ dQ/dT
Imputing the values listed above;
L = (0.2 * 2.23)(37-(-1))/220
L = (0.2 * 2.23 * 38)/220 = 16.948/220 = 0.077 m
Answer:
The inventor's claim is false in the sense that no thermal machine can violate the first thermodynamic law.
Explanation:
The inventor's claim could not be possible as no thermal machine can transfer more heat than the input work consumed. If we expose the thermal efficiency:
Where Q and W both must be in the same power unit, so we will convert the remove heat from BTU/hr to hp:
Therefore by comparing, we notice that the removing heat of 4.75 hp is large than the delivered work of 1.11 hp. By evaluating the efficiency:
[tex]n=4.75 hp / 1.1 hp = 4.3 > 1[/tex]
Answer:
please help you are not the intended recipient
Answer:
Explanation:
An industrial company grouped its factories according to the value of annual production in millions of C $ of each; the following distribution was obtained ...... Production value: 41-45, 46-50, 51-55, 56-60, 61-65, 66-70 ....... Number of factories: 7 , 10, 11, 9, 8, 7 ..... Complete the frequency distribution and determine and interpret the average annual production of the factories and the standard deviation of the productions.
Answer:
The answer is "
".
Explanation:
The amount of kilograms, which travel in a thick sheet of hydrogen:


calculating the value of 


calculating the value of 



