It’s the first one they both produce the plants pollen
Answer:
The Independent variable is the variable which does not rely of the other variables. It stays the same.
The Dependent variable is the variable that is measured or changed.
Explanation:
The Independent variable is usually the x value of a table or graph
the Dependent variable is usually the y value of a table or graph
I hope this helps!
<h3>
Answer:</h3>
2Fe(HCO₃)₃ → Fe₂(CO₃)₃ + 3H₂O + 3CO₂
<h3>
Explanation:</h3>
- A decomposition reaction is one in which a large compound is broken down into smaller compounds or individual elements.
- The decomposition reaction Iron (iii) hydrogen carbonate yield iron (iii) carbonate, water and carbon dioxide.
Fe(HCO₃)₃ → Fe₂(CO₃)₃ + H₂O + CO₂
- A balanced equation is the one in which the number of atoms of each element are equal on both side of the equation.
- Therefore; the balanced equation for the decomposition of Iron (iii) hydrogen carbonate is given by;
2Fe(HCO₃)₃ → Fe₂(CO₃)₃ + 3H₂O + 3CO₂
Answer: There are
five <span>bonding pairs of electrons in Methanol.
Explanation: Those electron pairs which are being shared between two atoms in molecule are called as
bonding pair electrons. While, those electron pairs which are not involved in bond formation and are not shared between two atoms are called as
Non-Bonding electron pairs.
In molecule of
Methanol as shown below, it can be seen that carbon atom is forming four bonds with three hydrogen atoms and one oxygen atom by sharing four electron pairs and oxygen is forming two bonds, one with carbon atom and one with hydrogen atom. There are two lone pair of electrons present on oxygen atom which are not taking part in and formation.</span>
Radioactive material undergoes first order dissociation kinetics.
For 1st order system,
k = 0.693 / t1/2
where, t 1/2 = half-life of the radioactive disintegration process.
Given that, t 1/2 = <span>73.83 days
Therefore, k = 0.009386 day-1
Also, for 1st order reaction,
k = </span>

Given that, Co = initial concentration of <span>Iridium-192 = 100 g
Therefore, </span>0.009386 =

On rearranging we get,
Ct = 100
Answer: Ct = 100

equation approximates the amount of Iridium-192 present after t days