Answer:
The solution will turn red.
Explanation:
HC₁₄H₁₄SO₃ + H₂O ⇌ HC₁₄H₁₄SO₃⁻ +H₃O⁺
(red) (yellow)
Methyl orange is a weak acid in which the ionized and unionized forms are distinct colours and are in equilibrium with each other,
At about pH 3.4, the two the forms are present in equal amounts, and the indicator colour is orange.
If you add more acid, you are disturbing the equilibrium.
According to Le Châtelier's Principle, when you apply a stress to a system at equilibrium, it will respond in such a way as to relieve the stress.
The system will try to get rid of the added acid, so the position of equilibrium will move to the left.
More of the unionized molecules will form, so the solution will turn red.
Answer:Nuclear binding energy is the energy needed to separate nuclear particles
The strong nuclear force holds an atom’s protons and neutrons together
Nuclear binding energy can be calculated using E=mc2
Explanation:
Answer and Explanation:deposition has been occurring on earth for a very long time. as time goes by, more deposits form layers on the earth, including the remains of animals and plants that would later become fossils, burying the previous deposits in another layer of newer deposits. therefore it follows that layers which are found deeper are older than those found in layers near the surface....
hope it helps u..
Answer : The mass of sulfuric acid needed is
.
Solution : Given,
pH = 8.94
Volume of solution = 380 ml =

Molar mass of sulfuric acid = 98.079 g/mole
As we know,

![pOH=-log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E-%5D)
![5.06=-log[OH^-]](https://tex.z-dn.net/?f=5.06%3D-log%5BOH%5E-%5D)
![[OH^-]=0.00000871=8.71\times 10^{-6}mole/L](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.00000871%3D8.71%5Ctimes%2010%5E%7B-6%7Dmole%2FL)
Now we have to calculate the moles of
.
Formula used : 
![\text{ Moles of }[OH^-]=\text{ Concentration of }[OH^-]\times Volume\\\text{ Moles of }[OH^-]=(8.71\times 10^{-6}mole/L)\times (380\times 10^{-3}L)=3309.8\times 10^{-9}moles](https://tex.z-dn.net/?f=%5Ctext%7B%20Moles%20of%20%7D%5BOH%5E-%5D%3D%5Ctext%7B%20Concentration%20of%20%7D%5BOH%5E-%5D%5Ctimes%20Volume%5C%5C%5Ctext%7B%20Moles%20of%20%7D%5BOH%5E-%5D%3D%288.71%5Ctimes%2010%5E%7B-6%7Dmole%2FL%29%5Ctimes%20%28380%5Ctimes%2010%5E%7B-3%7DL%29%3D3309.8%5Ctimes%2010%5E%7B-9%7Dmoles)
For neutralization, equal number of moles of
ions will neutralize same number of
ions.
![\text{ Moles of }[OH^-]=\text{ Moles of }[H^+]=3309.8\times 10^{-9}moles](https://tex.z-dn.net/?f=%5Ctext%7B%20Moles%20of%20%7D%5BOH%5E-%5D%3D%5Ctext%7B%20Moles%20of%20%7D%5BH%5E%2B%5D%3D3309.8%5Ctimes%2010%5E%7B-9%7Dmoles)
As, 
From this reaction, we conclude that
2 moles of
ion is given by the 1 mole of 
moles of
ion is given by
moles of 
Now we have to calculate the mass of sulfuric acid.
Mass of sulfuric acid = Moles of
× Molar mass of sulfuric acid
Mass of sulfuric acid = 
Therefore, the mass of sulfuric acid needed is
.