The lowest value of the henry's law for methane gas (CH₄) will be obtained with H₂O as the solvent and a temperature of 349 K.
The lowest value of the henry's law for methane gas (CH₄) will be obtained with H₂O as the solvent and a temperature of 349 K.
Henry's law: This law states that at a constant temperature, the amount of a gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas that in equilibrium with that liquid.
Mathematically it can be written as:

So, for the methane gas , lowest value of the henry's law obtained at 349 K and with H₂O as the solvent.
Answer:
Therefore we can say that the total number of electrons present in $ p - $ orbital of chlorine atoms is eleven.
Explanation:
Advantages of using tidal energy:
-Environment-friendly
-A highly predictable energy source
-High energy density
-Operational and maintenance costs are low
-An inexhaustible source of energy
Disadvantages of using tidal energy:
-High tidal power plant construction costs.
-Negative influence on marine life forms.
-Location limits.
-The variable intensity of sea waves.
Answer:
2 C₄H₁₀(l) + 13 O₂(g) ⇄ 8 CO₂(g) + 10 H₂O(g)
Explanation:
When a substance burns we talk about a combustion reaction. When combustion is complete the products are carbon dioxide and water, like in this case. The equation is:
C₄H₁₀(l) + O₂(g) ⇄ CO₂(g) + H₂O(g)
First, we balance the element with the largest stoichiometric coefficient (C).
C₄H₁₀(l) + O₂(g) ⇄ 4 CO₂(g) + H₂O(g)
Then, we balance H because it is in just 1 compound on each side.
C₄H₁₀(l) + O₂(g) ⇄ 4 CO₂(g) + 5 H₂O(g)
Finally, we balance O.
C₄H₁₀(l) + 6.5 O₂(g) ⇄ 4 CO₂(g) + 5 H₂O(g)
Since we want the smallest whole numbers, we multiply all coefficients by 2.
2 C₄H₁₀(l) + 13 O₂(g) ⇄ 8 CO₂(g) + 10 H₂O(g)
Answer:
The most effective buffer at pH 9.25 will be a mixture of 1.0 M NH3 and 1.0 M NH4Cl
Explanation:
Step 1: Data given
pH of a buffer = pKa + log ([A-]/[Ha])
a mixture of 1.0 M HC2H3O2 and 1.0 M NaC2H3O2 (Ka for acetic acid = 1.8 x 10-5)
pH = -log( 1.8 * 10^-5) + log (1/1)
pH = -log( 1.8 * 10^-5)
pH = 4.74
a mixture of 1.0 M NaCN and 1.0 M KCN (Ka for HCN = 4.9 x 10-10)
pH = -log( 4.9 * 10^-10) + log (1/1)
pH = -log( 1.8 * 10^-5)
pH = 9.30
a mixture of 1.0 M HCl and 1.0 M NaCl
The solution made from NaCl and HCl will NOT act as a buffer.
HCl is a strong acid while NaCl is salt of strong acid and strong base which do not from buffer solutions hence due to HCl PH is less than 7.
a mixture of 1.0 M NH3 and 1.0 M NH4Cl (Kb for ammonia = 1.76 x 10^-5)
Ka * Kb = 1*10^-14
Ka = 10^-14 / 1.76*10^-5
Ka = 5.68*10^-10
pH = -log( 5.68*10^-10) + log (1/1)
pH = -log( 5.68*10^-10)
pH = 9.25
The most effective buffer at pH 9.25 will be a mixture of 1.0 M NH3 and 1.0 M NH4Cl