<u>Answer:</u> The entropy change of the ethyl acetate is 133. J/K
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

Given mass of ethyl acetate = 398 g
Molar mass of ethyl acetate = 88.11 g/mol
Putting values in above equation, we get:

To calculate the entropy change for different phase at same temperature, we use the equation:

where,
= Entropy change = ?
n = moles of ethyl acetate = 4.52 moles
= enthalpy of fusion = 10.5 kJ/mol = 10500 J/mol (Conversion factor: 1 kJ = 1000 J)
T = temperature of the system = ![84.0^oC=[84+273]K=357K](https://tex.z-dn.net/?f=84.0%5EoC%3D%5B84%2B273%5DK%3D357K)
Putting values in above equation, we get:

Hence, the entropy change of the ethyl acetate is 133. J/K
Answer:
<h2>10 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>10 m/s²</h3>
Hope this helps you
Answer:1. Energy 2. Medium 3. Original position 4. Waves 5. Matter
Explanation:
Answer: a low
and low pH.
Explanation:
pH is the measure of acidity or alkalinity of a solution.
pH is calculated by taking negative logarithm of hydrogen ion concentration.
![pOH=-log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E-%5D)
Thus as pOH and
are inversely related, a solution having higher pOH will have less amount of
concentration. And a solution having more pOH will have less pH.
Thus a substance with a high pOH would likely have low
concentration and low pH.