Protein would be the main one.
The equilibrium constant of the reaction is 282. Option D
<h3>What is equilibrium constant?</h3>
The term equilibrium constant refers to the number that often depict how much the process is able to turn the reactants in to products. In other words, if the reactants are readily turned into products, then it follows that the equilibrium constant will be large and positive.
Concentration of bromine = 0.600 mol /1.000-L = 0.600 M
Concentration of iodine = 1.600 mol/1.000-L = 1.600M
In this case, we must set up the ICE table as shown;
Br2(g) + I2(g) ↔ 2IBr(g)
I 0.6 1.6 0
C -x -x +2x
E 0.6 - x 1.6 - x 1.190
If 2x = 1.190
x = 1.190/2
x = 0.595
The concentrations at equilibrium are;
[Br2] = 0.6 - 0.595 = 0.005
[I2] = 1.6 - 0.595 = 1.005
Hence;
Kc = [IBr]^2/[Br2] [I2]
Kc = ( 1.190)^2/(0.005) (1.005)
Kc = 282
Learn more about equilibrium constant:brainly.com/question/15118952
#SPJ1
Explanation:
Solar energy is the radiant energy emmitted from the Sun. It is the electromagnetic energy
Explanation:
please mark me as brainlest
Answer: <span>A reaction progress curve has three peaks and two valleys between the peaks. This curve describes a reaction mechanism that involves
<u>three elementary reactions</u>.
Explanation: I have drawn the progress curve with three peaks and two valleys. In fact the peaks shows higher energy and valleys show lower energies. So, Let suppose we react
A and
B. This reaction between A and B results in the formation of
C. In this reaction the energies of A and B are less, and during the progress of reaction they cross a transition state of higher energy and forms product C with lower energy which is present at lower valley. This was first reaction. Other two reactions will be followed by conversion of C to
D and conversion of D into
E.</span>