Answer:
1. starting and stabilizing the stir function
2. a medium heat
3.turn up the heat setting
Explanation:
A chemical reaction can be defined as a chemical process which typically involves the transformation or rearrangement of the atomic, ionic or molecular structure of an element through the breakdown and formation of chemical bonds to produce a new compound or substance.
Some of the laboratory apparatus (equipment) used for conducting a chemical reaction are conical flask, Bunsen burner, beaker, tongs, crucible, round bottom flask etc.
When heating a solution to boiling on a hot plate, start by starting and stabilizing the stir function. Then, turn the heat to a medium heat to start. If necessary, turn up the heat setting after waiting about ten minutes without seeing boiling.
The safety precautions that must be taken when heating a solution to boiling on a hot plate;
I. A proper inspection of the round bottom flask for cracks, irregularities or any imperfection.
II. Ensure you avoid heating the flask while it is closed.
III. When suspending the flask on a hot plate, you should ensure that you use a clamp for stability.
Answer:
5kg
Explanation:
Force = Mass x acceleration
F = ma
m = F/a = 10N/2m/s^2
m = 10/2 = 5kg
The standard unit for mass = Kilogram
Answer:
Mass = 135.66 ×10⁻²¹ g
Explanation:
Given data:
Number of molecules of CuSO₄= 5.119×10²
Mass of CuSO₄= ?
Solution:
The given problem will solve by using Avogadro number.
1 mole contain 6.022×10²³ molecules
5.119×10² molecules ×1 mol / 6.022×10²³ molecules
0.85×10⁻²¹ mol
Mass in grams:
Mass = number of moles × molar mass
Mass = 0.85×10⁻²¹ mol × 159.6 g/mol
Mass = 135.66 ×10⁻²¹ g
Answer:
9) Substitution Reaction
10) Covalent Bond
11) Ionic Bond
12) Covalent Bond
13) Ionic Bond
14) 9 atoms
Explanation:
9) Substitution Reaction: Substitution reaction is a chemical reaction in which one atom, ion or species replaced by another atom, ion or species
10) Covalent Bond: Covalent bond is a bond that formed between two nonmetals, when both the species are non metal, the electronegativity of both the nonmetals are comparatively same, hence any of both do not pulls completely electron of other & the bond is formed by the sharing of electron.
11) Ionic Bond: We know that nonmetals have high electronegativity than those of metals, due to high electronegativity non metals pulls the electrons of metals but there is enough interaction that non metal do not escape after pulling the electron, & an ionic bond generates where non metals possess negative charge & positive charge goes to metal.
12) Covalent Bond: The bond formed between two atoms having less electronegativity diffrence by sharing of electron pair is know as covalent bond. for e.g the Carbon - Hydrogen bond in methane (CH4) molecule is covalent bonded because the electronegativity of carbon is 2.5 & that of hydrogen is 2.1 which is almost close, hence the bond formed is covalent.
13) Ionic Bond: The bond formed between two atoms having high electronegativity diffrence & the bond formed is due to complete transfer of electron by one species. For e.g. NaCl the sodium is a metal having electronegativity 0.9 and chlorine is non metal having electronegativity 3.0 the electronegativity diffrence is too high, hence the chlorine behaves as Cl- ion that of sodium as Na+, both the components behaves as ion but they are bonded &that bond is called as Ionic bond.
14) 9 Atoms: One molecule of water (H2O) posses three atoms, two hydrogen atoms & one oxygen atom, the number of atoms in 3 molecules of water 3×3 = 9 atoms.
<em><u>Thanks for joining brainly community!</u></em>
Answer:0.026ml
Explanation:
Details are found in the image attached. We must subtract the saturated vapour pressure of hydrogen gas at the given temperature from the total pressure of the hydrogen gas collected over water to obtain the actual pressure of hydrogen gas and substitute the value obtained into the general gas equation. The dry hydrogen gas has no saturated vapour pressure hence the value is substituted as given. All temperatures must be converted to Kelvin before substitution.