Answer:
Here's what I find.
Explanation:
Iodine-131
Iodine-131 is both a beta emitter and a gamma emitter.

About 90 % of the energy is β-radiation and 10 % is γ-radiation. Both forms are highly energetic.
The main danger is from ingestion. The iodine concentrates in thyroid gland, where the β-radiation destroys cells up to 2 mm from the tissues that absorbed it.
Both the β- and γ-radiation cause cell mutations that can later become cancerous. Small doses, such as those absorbed from the nuclear disasters in the Ukraine and Japan, can cause cancers years after the original iodine has disappeared.
Plutonium-239
Plutonium-239 is an alpha emitter.

Alpha particles cannot penetrate the skin, so external exposure isn't much of a health risk.
However, they are extremely dangerous when they are inhaled and get inside cells. They travel first to the blood or lymph system and later to the bone marrow and liver, where they cause up to 1000 times more chromosomal damage than beta or gamma rays.
It takes about 20 years for plutonium to be eliminated from the liver around 50 years for from the skeleton, so it has a long time to cause damage.
Answer:
A synthesis reaction is <em>a reaction that occurs when two or more reactants combine into one product.</em>
Explanation:
A reaction that occurs when two or more reactants combine into one product is called a synthesis reaction.
A reaction that occurs when one element within a compound is exchanged with another element is called a single replacement reaction.
A reaction that occurs when a substance combines with molecular oxygen, releasing light and energy is called combustion.
A reaction that occurs when a single substance breaks apart and forms two or more new substances is called decomposition.
Answer:
5.52cm³ of water will rise and might spill over the edge
Explanation:
Use the change in volume of a liquid with changing temperature equation which is written as
ΔV = β x V₀ x ΔT, where β is the coefficient of expansion, V₀ is the volume being submerged and ΔT is the difference in temperature
ΔV = (69 x 10⁻⁶) x (0.1 x 0.1 x 0.1) x (85 - 5)
ΔV = 5.52 x 10⁻⁶ m³
ΔV = 5.52cm³
Answer:
C) formaldehyde, H2C=O.
Explanation:
Hello,
In this case, given that the hydrogen bondings are known as partial intermolecular interactions between a lone pair on an electron rich donor atom, particularly oxygen, and the antibonding molecular orbital of a bond between hydrogen and a more electronegative atom or group. Thus, among the options, C) formaldehyde, H2C=O, will exhibit hydrogen bonding since the lone pair of electrons of the oxygen at the carbonyl group, are able to interact with hydrogen (in the form of water).
Best regards.