Answer:
Ionic or Electrovalent Bonding
Explanation:
There are primarily two categories of bonding between chemical entities. We have; Ionic Bonding and Covalent Bonding.
Ionic bonding or electrovalent bonding is the complete transfer of valence electron(s) between atoms. There is the transfer of electron from typically a metal to a non metal.
Covalent Bonding however involves the sharing of electrons between atoms. Depending on whuch atoms provide the electrons, it can be ordinary covalent oor coordinate covelent bond.
Answer:
qwertyuiopasdfghjkl;Zxcvbnm,zxfbfa
Explanation:
Usually when it rains the worms surface!
HOPE THIS HELPS!
A) CH4
In general, methane reactions are difficult to control. Partial oxidation to methanol, for example, is a rather difficult reaction because the chemical reactions that occur continue to form carbon dioxide and water even though the amount of oxygen available is insufficient.
<h2>Further explanation
</h2>
Methane is the simplest hydrocarbon in the form of gas with the chemical formula CH4. Pure methane does not smell, but if used for commercial purposes, a bit of sulfur is usually added to detect leaks that might occur.
Methane is a greenhouse gas. Methane is used in chemical industrial processes and can be transported as frozen liquids (liquefied natural gas, or LNG).
Methane is a major component of natural gas, around 87% of volume.
Methane is not toxic, but is highly flammable and can cause explosions when mixed with air.
Learn More
CH4 / Methane brainly.com/question/9473007
Benefits of methane brainly.com/question/10818009
Details
Class: college
Subject: chemistry
Keywords: ch4, methane, chemicals
a. pH=2.07
b. pH=3
c. pH=8
<h3>Further explanation</h3>
pH=-log [H⁺]
a) 0.1 M HF Ka = 7.2 x 10⁻⁴
HF= weak acid
![\tt [H^+]=\sqrt{Ka.M}\\\\(H^+]=\sqrt{7.2.10^{-4}\times 0.1}\\\\(H^+]=8.5\times 10^{-3}\\\\pH=3-log~8.5=2.07](https://tex.z-dn.net/?f=%5Ctt%20%5BH%5E%2B%5D%3D%5Csqrt%7BKa.M%7D%5C%5C%5C%5C%28H%5E%2B%5D%3D%5Csqrt%7B7.2.10%5E%7B-4%7D%5Ctimes%200.1%7D%5C%5C%5C%5C%28H%5E%2B%5D%3D8.5%5Ctimes%2010%5E%7B-3%7D%5C%5C%5C%5CpH%3D3-log~8.5%3D2.07)
b) 1 x 10⁻³ M HNO₃
HNO₃ = strong acid
![\tt pH=-log[1\times 10^{-3}]=3](https://tex.z-dn.net/?f=%5Ctt%20pH%3D-log%5B1%5Ctimes%2010%5E%7B-3%7D%5D%3D3)
c) 1 x 10⁻⁸ M HCl
![\tt pH=-log[1\times 10^{-8}]=8](https://tex.z-dn.net/?f=%5Ctt%20pH%3D-log%5B1%5Ctimes%2010%5E%7B-8%7D%5D%3D8)