Answer:
Pressure or Average Kinetic Energy
Explanation:
When dealing with sealed containers filled with gas, there are many variables to consider. Namely: pressure, temperature, volume, number of molecules present.
However, this question can be solved easily, without worrying too much about the other variables. Usually the case is that if there is a difference in pressure, there will be a difference in temperature, so the answer could be that both pressures must be equal.
Another way we could look at it is that the Average Kinetic Energies between the two containers have to be equal, and this will then lead to the temperatures being equal without worrying about other variables.
Answer:
whats the question??? I am familiar with brainpop but if u tell me the question ill give u the asnwer
Explanation:
Answer:
<h2>100°C is the boiling point of water in degrees Celsius</h2>
Answer:
290.82g
Explanation:
The equation for the reaction is given below:
2Al + 3H2SO4 -> Al2(SO4)3 + 3H2 now, let us obtain the masses of H2SO4 and Al2(SO4)3 from the balanced equation. This is illustrated below:
Molar Mass of H2SO4 = (2x1) + 32 + (16x4) = 2 + 32 +64 = 98g/mol
Mass of H2SO4 from the balanced equation = 3 x 98 = 294g
Molar Mass of Al2(SO4)3 = (2x27) + 3[32 + (16x4)]
= 54 + 3[32 + 64]
= 54 + 3[96] = 54 + 288 = 342g
Now, we can obtain the mass of aluminium sulphate formed by doing the following:
From the equation above:
294g of H2SO4 produced 342g of Al2(SO4)3.
Therefore, 250g of H2SO4 will produce = (250 x 342)/294 = 290.82g of Al(SO4)3
Therefore, 290.82g of aluminium sulphate (Al(SO4)3) is formed.
Answer:
When considering phase changes, the closer molecules are to one another, the stronger the intermolecular forces. Good! For any given substance, intermolecular forces will be greatest in the solid state and weakest in the gas state.
In the case of melting, added energy is used to break the bonds between the molecules. ... If heat is coming into a substance during a phase change, then this energy is used to break the bonds between the molecules of the substance. The example we will use here is ice melting into water.