A patient who is prescribed a dose inhaler will find that it must be filled with a) medicine in powder form only. Works with lower (not upper) respiratory diseases only. Full of medicine used to give a fixed amount of medicine per oral inhalation. d) Medication in the form of a spray only.
The answer is C) reactants because a chemical reaction is the process in which atoms present in the starting substance rearrange to give new chemical combinations present in the substance formed by the reaction
Most rocks that we encounter in our normal everyday lives are sedimentary rocks. Sedimentary rocks are rocks that have been worn down gradually over long periods of time. Because it takes very long periods of time (couple decades) for these rocks to change, it often seems as if they don't change at all, when in reality the change is too small for us to realize it!
Answer:
1.14 × 10³ mL
Explanation:
Step 1: Given data
- Initial volume of the gas (V₁): 656.0 mL
- Initial pressure of the gas (P₁): 0.884 atm
- Final volume of the gas (V₂): ?
- Final pressure of the gas (P₂): 0.510 atm
Step 2: Calculate the final volume of the gas
If we assume ideal behavior, we can calculate the final volume of the gas using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁/P₂
V₂ = 0.884 atm × 656.0 mL/0.510 atm = 1.14 × 10³ mL
Answer:
Causes the equilibrium to shift to the left, in favor of making more reactants, and K decreases.
Explanation:
Le Châtelier's principle states that if there is a stress in equilibrium, the reaction will shift to restore the equilibrium. An exothermic reaction loses heat for the surroundings, so the equilibrium must be represented as:
Reactants ⇔ Products + Heat
Then, when more heat is added, to restore the equilibrium, the reaction shift to the left ("consuming" heat), in favor of making more reactants.
The equilibrium constant (K) is:
K = [Products]/[Reactants]
So, [Reactants] will increase, and K must decrease.