Answer:
Lithium
Explanation:
The equation for the photoelectric effect is

where
is the energy of the incident photon, with
h being the Planck constant
c is the speed of light
is the wavelength of the photon
is the work function of the metal (the minimum energy needed to extract the photoelectron from the metal)
is the maximum kinetic energy of the emitted photoelectrons
In this problem, we have
is the wavelength of the incident photon
is the maximum kinetic energy of the electrons
First of all we can find the energy of the incident photon

Converting into electronvolts,

So now we can re-arrange the equation of the photoelectric effect to find the work function of the metal

So the metal is most likely Lithium, which has a work function of 2.5 eV.
The correct answer is "<span>stormy weather".
In fact, barometric low pressure is generally associated with rain, precipitations, or more in general with bad weather. On the contrary, high atmospheric pressure is usually associated with sunny weather.</span>
F=ma
F = 148×(85-35)÷20
F = 148×(50÷20)
F = 148×2.5
F = 370N
Answer: Impulse = 4 kgm/s
Explanation:
From the question, you're given the following parameters:
Momentum P1 = 12 kgm/s
Momentum P2 = 16 kgm/s
Time t = 0.2 s
According to second law of motion,
Force F = change in momentum ÷ time
That is
F = (P2 - P1)/t
Cross multiply
Ft = P2 - P1
Where Ft = impulse
Substitute P1 and P2 into the formula
Impulse = 16 - 12 = 4 kgm/s
The magnitude of the impulse is therefore 4 kgm/s.
Answer:
the free encyclopedia. In molecular geometry, bond length or bond distance is defined as the average distance between nuclei of two bonded atoms in a molecule. It is a transferable property of a bond between atoms of fixed types, relatively independent of the rest of the molecule.
Explanation: