1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vesna [10]
3 years ago
8

A regular polygon has angkes of size 150° each.how many side has the polygon​

Physics
1 answer:
emmasim [6.3K]3 years ago
5 0

Answer: 12

Explanation:

ıf each interior is 150 degrees, then each exterior angle is 180–150 or 30 degrees. Hence the polygon has 360/30 = 12 sides

You might be interested in
You and your friend throw balloons filled with water from the roof of a several story apartment house. You simply drop a balloon
Aleks [24]

Answer:

Height = 53.361 m

Explanation:

There are two balloons being thrown down, one with initial speed (u1) = 0 and the other with initial speed (u2) = 43.12

From the given information we make the following summary

u_{1} = 0m/s

t_{1} = t

u_{2} = 43.12m/s

t_{2} = (t-2.2)s

The distance by the first balloon is

D = u_{1} t_{1}  + \frac{1}{2} at_{1}^2

where

a = 9.8m/s2

Inputting the values

D = (0)t + \frac{1}{2} (9.8)t^2\\ D = 4.9t^2

The distance traveled by the second balloon

D = u_{2} t_{2}  + \frac{1}{2} at_{2}^2

Inputting the values

D = (43.12)(t-2.2)  + \frac{1}{2} (9.8)(t-2.2)^2

simplifying

D = 4.9t^2 + 21.56t -71.148

Substituting D of the first balloon into the D of the second balloon and solving

4.9t^2 = 4.9t^2 + 21.56t -71.148 \\ 21.56t = 71.148\\ t = 3.3s

Now we know the value of t. We input this into the equation of the first balloon the to get height of the apartment

D = 4.9(3.3)^2\\ D = 53.361 m

7 0
3 years ago
(a) How much work is required to lift a 35-kg object from the ground 3.0 m into the air? (b) How much gravitational potential en
V125BC [204]

Answer:

(a) work required to lift the object is 1029 J

(b) the gravitational potential energy gained by this object is 1029 J

Explanation:

Given;

mass of the object, m = 35 kg

height through which the object was lifted, h = 3 m

(a) work required to lift the object

W = F x d

W = (mg) x h

W = 35 x 9.8 x 3

W = 1029 J

(b) the gravitational potential energy gained by this object is calculated as;

ΔP.E = Pf - Pi

where;

Pi is the initial gravitational potential energy, at initial height (hi = 0)

ΔP.E = (35 x 9.8 x 3) - (35 x 9.8 x 0)

ΔP.E = 1029 J

7 0
3 years ago
You are driving a 2400.0-kg car at a constant speed of 14.0 m/s along a wet, but straight, level road. As you approach an inters
olya-2409 [2.1K]

Answer:0.43

Explanation:

Given

mass of car m=2400 kg

Speed of car u=14 m/s

Distance traveled before coming to halt s=23.2 m

Let \muthe coefficient of friction

Maximum deceleration road can provide during motion is

a=\mu g

using v^2-u^2=2 as

0-14^2=2\cdot (-\mu g)\cdot 23.2

\mu =\frac{196}{454.72}

\mu =0.431

7 0
3 years ago
A parallel-plate capacitor with circular plates of radius R is being charged by a battery, which provides a constant current. At
NikAS [45]

To solve this problem it is necessary to apply the concepts related to the magnetic field.

According to the information, the magnetic field INSIDE the plates is,

B=\frac{1}{2} \mu \epsilon_0 r

Where,

\mu =Permeability constant

\epsilon_0 =Electromotive force

r = Radius

From this deduction we can verify that the distance is proportional to the field

B \propto r

Then the distance relationship would be given by

\frac{r}{R} = \frac{B}{B_{max}}

r =\frac{B}{B_{max}} R

r = \frac{0.5B_{max}}{B_{max}}R

r = 0.5R

On the outside, however, it is defined by

B = \frac{\mu_0 i_d}{2\pi r}

Here the magnetic field is inversely proportional to the distance, that is

B \not\propto r

Then,

\frac{r}{R} = \frac{B_{max}{B}}

r = \frac{B_{max}{B}}R

r = \frac{B_{max}{0.5B_{max}}}R

r = 2R

7 0
3 years ago
Sorry I keep asking questions, but if two forces on an object are balanced, will it move? (Im also trying to get rid of my point
Dmitrij [34]
If they are equal amounts in force then No it won't.
6 0
3 years ago
Read 2 more answers
Other questions:
  • Objects in free fall near the surface of the earth accelerate downward at what rate
    6·2 answers
  • Does plants have prokaryotic cells?
    10·2 answers
  • The unit of length most suitable for measuring the thickness of a cell phone is a
    13·1 answer
  • A 15kg projectile is moving with a velocity of 25m/s calculate its momentum
    13·1 answer
  • Please help me with questions 1, 2 and 3. <br> i need a step by step explanation
    10·1 answer
  • newton’s second law states that f=m x a (force is mass times acceleration). which example would have the greatest acceleration
    13·1 answer
  • Two drag cars race. They line up at the starting line at rest. The winning car accelerates at a constant rate a and reaches the
    11·1 answer
  • A plane drops a rubber raft to the survivors of a shipwreck. The plane is flying at a height of 1960 m and with a speed of 109 m
    11·1 answer
  • Students in physics lab times 10 oscillations of the pendulum and get 11.50 seconds how long is a pendulum in centimeters?
    6·1 answer
  • You have discovered a planet that is one-quarter the radius of Earth (Rp = 1/4R⊕) and one-half as massive (Mp = 1/2M⊕). How does
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!