Answer:
3.9 m/s
Explanation:
We are given that
Mass of car,m=
Initial velocity,u=0
Distance,s=5.9 m

Average friction force,f=
We have to find the speed of the car at the bottom of the driveway.
Net force,
Where 
Acceleration,


v=3.9 m/s
Answer:
a) f=0.1 Hz ; b) T=10s
c)λ= 36m
d)v=3.6m/s
e)amplitude, cannot be determined
Explanation:
Complete question is:
Determine, if possible, the wave's (a) frequency, (b) period, (c) wavelength, (d) speed, and (e) amplitude.
Given:
number of wave crests 'n'= 5
pass in a time't' 54.0s
distance between two successive crests 'd'= 36m
a) Frequency of the waves 'f' can be determined by dividing number of wave crests with time, so we have
f=n/t
f= 5/ 54 => 0.1Hz
b)The time period of wave 'T' is the reciprocal of the frequency
therefore,
T=1/f
T=1/0.1
T=10 sec.
c)wavelength'λ' is the distance between two successive crests i.e 36m
Therefore, λ= 36m
d) speed of the wave 'v' can be determined by the product of frequency and wavelength
v= fλ => 0.1 x 36
v=3.6m/s
e) For amplitude, no data is given in this question. So, it cannot be determined.
Answer:
Yes
Explanation:
The spring force is given as:
F = kd
F is the spring force
K is the spring constant
d is the magnitude of the stretch
Since k is a constant, therefore, doubling the stretch distance will double the force.
Both stretch distance and force applied can be said to be directly proportional to one another.
Answer:
Explanation:
E = σ/ε = (F/A) / (ΔL/L)
E = (mg/(πd²/4) / (ΔL/L)
E = (4mg/(πd²) / (ΔL/L)
E = 4Lmg/(πd²ΔL)
E = 4(30.0)(90)(9.8)/(π(0.01²)0.25)
E = 1.35 x 10⁹ Pa or 1.35 GPa