Since we want just the top 20% applicants and the data is normally distributed, we can use a z-score table to check the z-score that gives this percentage.
The z-score table usually shows the percentage for the values below a certain z-score, but since the whole distribution accounts to 100%, we can do the following.
We want a z* such that:

But, to use a value that is in a z-score table, we do the following:

So, we want a z-score that give a percentage of 80% for the value below it.
Using the z-score table or a z-score calculator, we can see that:
![\begin{gathered} P(zNow that we have the z-score cutoff, we can convert it to the score cutoff by using:[tex]z=\frac{x-\mu}{\sigma}\Longrightarrow x=z\sigma+\mu](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20P%28zNow%20that%20we%20have%20the%20z-score%20cutoff%2C%20we%20can%20convert%20it%20to%20the%20score%20cutoff%20by%20using%3A%5Btex%5Dz%3D%5Cfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5CLongrightarrow%20x%3Dz%5Csigma%2B%5Cmu)
Where z is the z-score we have, μ is the mean and σ is the standard deviation, so:

so, the cutoff score is approximately 72.
Answer:
Step-by-step explanation:
m = 5 ; (3, -4)
y - y₁ = m (x - x₁)
y - [-4] = 5 (x - 3)
y + 4 = 5x - 15
y = 5x - 15 - 4
y = 5x - 19
Answer:
4/5 or 53°
Step-by-step explanation:
soh
cah
toa
you want soh
sine=opposite/hyp
therefore sine of C is 4/5
to find the degrees you have to something a lil different.
sin^-1 (theta)= 4/5
sin^-1(4/5)=theta
53°=theta
Consider the following sets of sample data: A: $29,400, $30,900, $21,000, $33,200, $21,300, $24,600, $29,500, $22,500, $35,200,
Lana71 [14]
Answer:
CV for A = 21.8%
CV for B = 15.5%
Step-by-step explanation:
The formula for coefficient of variation is:
CV = Standard Deviation / Mean
So,
For A:
Mean = Sum/No. of items
= 391300/14
=$27950
and
SD = $6085.31
CV for A = 6085.31/27950 * 100
=21.77%
Rounding off to one decimal
CV for A = 21.8%
For B:
Mean = Sum/No. of items
= 43.58/11
=3.96
and
SD = 0.615
CV for B = 0.615/3.96 * 100
=15.53%
=15.5% ..