Answer:
The new volume will be 42, 7 L.
Explanation:
We use the gas formula, which results from the combination of the Boyle, Charles and Gay-Lussac laws. According to which at a constant mass, temperature, pressure and volume vary, keeping constant PV / T. The conditions STP are: 1 atm of pressure and 273 K of temperature.
P1xV1/T1 =P2xV2/T2
1 atmx 22,4 L/273K = 0,5atmx V2/260K
V2=((1 atmx 22,4 L/273K )x 260K)/0,5 atm= 42, 67L
Answer:
Adding Catalyst can Speed up a Chemical reaction
Answer:
the amount of products and reactants is constant
Tin metal reacts with hydrogen fluoride to produce tin(II) fluoride and hydrogen gas according to the following balanced equation.
Sn(s)+2HF(g)→SnF2(s)+H2(g)
Sn(s)+2HF(g)→
SnF
2
(s)+
H
2
(g)
How many moles of hydrogen fluoride are required to react completely with 75.0 g of tin?
Step 1: List the known quantities and plan the problem.
Known
given: 75.0 g Sn
molar mass of Sn = 118.69 g/mol
1 mol Sn = 2 mol HF (mole ratio)
Unknown
mol HF
Use the molar mass of Sn to convert the grams of Sn to moles. Then use the mole ratio to convert from mol Sn to mol HF. This will be done in a single two-step calculation.
g Sn → mol Sn → mol HF
Step 2: Solve.
75.0 g Sn×1 mol Sn118.69 g Sn×2 mol HF1 mol Sn=1.26 mol HF
75.0 g Sn×
1
mol Sn
118.69
g Sn
×
2
mol HF
1
mol Sn
=1.26 mol HF
Step 3: Think about your result.
The mass of tin is less than one mole, but the 1:2 ratio means that more than one mole of HF is required for the reaction. The answer has three significant figures because the given mass has three significant figures.