Light speed is the speed at which light can travel in a "vacuum" (space for example).
The speed of light is constant and is exactly: 299,792,458 meters per second
ONLY IN A VACUUM!!
The speed of light changes when it goes through different mediums (such as from space to Earth, light travels slower in Earth).
Good luck!
In a particle accelerator a positron (C= +1.6 x 10-19) travels through a perpendicular magnet field with a magnitude
of 3.1 x 10-2 T. At what speed must the positron travel in order for it to experience a force of 4.75 x 10-14 N?
28. An alpha particle (2 protons and 2 neutrons) experiences a downward force of 2.9 x 10-14 N while traveling in a
magnetic field with a strength of 5.1 x 10-19 T pointing to the north. Find the speed of the particle and the direction
it must be traveling in.
29. Find the length of a wire if it experiences a .63N force when it travels through a magnetic field with a strength of
0.85T whilst carrying 5.0 amps of current.
30. A coil with 462 turns of wire, a total resistance of 36Ω , and a cross-sectional area of 0.25 m2
is positioned with its
plane perpendicular to the field of a powerful electromagnet. What average current is induced in the coil during the 0.37s
that the magnetic field drops from 3.1 T to 0.0 T?
31. A step-up transformer has a potential difference across the primary of 28 V and a potential difference across the
secondary of 3.0 × 104
V. There are 28 turns in the primary coil. How many turns are in the secondary?
32. A step-up transformer is used to create a potential difference of 1.6872 × 105
V across the secondary. The potentia
The protons and electrons are held in place on the x axis.
The proton is at x = -d and the electron is at x = +d. They are released at the same time and the only force that affects movement is the electrostatic force that is applied on both subatomic particles. According to Newton's third law, the force Fpe exerted on protons by the electron is opposite in magnitude and direction to the force Fep exerted on the electron by the proton. That is, Fpe = - Fep. According to Newton's second law, this equation can be written as
Mp * ap = -Me * ae
where Mp and Me are the masses, and ap and ae are the accelerations of the proton and the electron, respectively. Since the mass of the electron is much smaller than the mass of the proton, in order for the equation above to hold, the acceleration of the electron at that moment must be considerably larger than the acceleration of the proton at that moment. Since electrons have much greater acceleration than protons, they achieve a faster rate than protons and therefore first reach the origin.
Answer:

Explanation:
We should first find the velocity and acceleration functions. The velocity function is the derivative of the position function with respect to time, and the acceleration function is the derivative of the velocity function with respect to time.

Similarly,

Now, the angle between velocity and acceleration vectors can be found.
The angle between any two vectors can be found by scalar product of them:

So,

At time t = 0, this equation becomes

The formula for this problem that we will be using is:
F * cos α = m * g * μs where:F = 800m = 87g = 9.8
cos α = m*g*μs/F= 87*9.8*0.55/800= 0.59 So solving the alpha, find the arccos above.
α = arccos 0.59 = 54 ° is the largest value of alpha