Answer:
Waves can be measured using wavelength and frequency. ... The distance from one crest to the next is called a wavelength (λ). The number of complete wavelengths in a given unit of time is called frequency (f). As a wavelength increases in size, its frequency and energy (E) decrease.
Answer:
True
Explanation: If this is a true or false question it is *T*
Twenty is the atomic number of potassium.
Answer:
(C) length / height of the plane
Explanation:
The mechanical advantage of an inclined plane can be determined using different variables. In this case, the geometry of the setup is relevant. The advantage is proportional to the length of the plane, and inversely proportional to the height: it is the ratio (length) / (height) of the plane. For example, given a desired, fixed height, a long inclined plane gives you a bigger mechanical advantage than a short inclined plane. In this example, pushing an object up the long plane will require a smaller force, than it would on the short plane.
Strictly speaking, (D) would also "allow you to determine the mechanical advantage" because you could simply invert the ratio listed under (D). However, (C) is the best, direct, answer.
Answer:
Ideal mechanical advantage of the lever is 3.
Explanation:
Given that,
The distance between the levers input force and the fulcrum is 8 cm, 
The distance between the fulcrum and the output force is 24 cm, 
To find,
The ideal mechanical advantage of the lever.
Solution,
The ratio of the distance between the fulcrum and the output force to the distance between the levers input force and the fulcrum is called the ideal mechanical advantage of the lever. It is given by :


m = 3
So, the ideal mechanical advantage of the lever is 3.