Answer:
η = 58.8%
Explanation:
Work is defined as the force applied by the distance traveled by the body.
![W =F*d](https://tex.z-dn.net/?f=W%20%3DF%2Ad)
where:
W = work [J] (units of joules)
F = force = 294 [N]
d = distance = 5 [m]
![W = 294*5\\W = 1470 [J]\\](https://tex.z-dn.net/?f=W%20%3D%20294%2A5%5C%5CW%20%3D%201470%20%5BJ%5D%5C%5C)
Efficiency is defined as the energy required to perform an activity in relation to the energy actually added to perform some activity. This can be better understood by means of the following equation.
![efficiency = W_{done}/W_{required}\\efficiency = 1470/2500\\efficiency = 0.588 = 58.8%](https://tex.z-dn.net/?f=efficiency%20%3D%20W_%7Bdone%7D%2FW_%7Brequired%7D%5C%5Cefficiency%20%3D%201470%2F2500%5C%5Cefficiency%20%3D%200.588%20%3D%2058.8%25)
Answer:
<h2>Gravity :</h2><h3>the force that attracts a body towards the centre of the earth, or towards any other physical body having mass.</h3>
<h2>Solar day</h2><h3>A solar day is the time it takes for the Earth to rotate about its axis so that the Sun appears in the same position in the sky.</h3><h2> or</h2><h3>It is the time between successive meridian transits of the sun at a particular place.</h3>
Answer:14 m/s
Explanation:
Kinetic energy(ke)=175J
Momentum(M)=25kgm/s
Speed=v
Mass=m
Ke=(m x v x v)/2
175=(mv^2)/2
Cross multiply
175 x 2=mv^2
350=mv^2
Momentum=mass x velocity
25=mv
m=25/v
Substitute m=25/v in 350=mv^2
350=25/v x v^2
350=25v^2/v
v^2/v=v
350=25v
v=350/25
v=14 m/s
Answer:
The required diagram is shown in the figure. When an object is placed in front of the convex lens, i.e., between 2F
1
and F
1
, its image is formed beyond 2F
2
on the other side of the lens. The image is real, inverted and enlarged.
solution
The original kinetic energy will be 0 J and the final kinetic energy will be 7500 J and the amount of work utilized will be similar to the final kinetic energy i.e., 7500 J.
<u>Explanation:</u>
As it is known that the kinetic energy is defined as the energy exhibited by the moving objects. So the kinetic energy is equal to the product of mass and square of the velocity attained by the car. Thus,
![\text {Kinetic energy}=\frac{1}{2} m v^{2}](https://tex.z-dn.net/?f=%5Ctext%20%7BKinetic%20energy%7D%3D%5Cfrac%7B1%7D%7B2%7D%20m%20v%5E%7B2%7D)
So the initial kinetic energy will be the energy exerted by the car at the initial state when the initial velocity is zero. Thus the initial kinetic energy will be zero.
The final kinetic energy is
= 7500 J
As the work done is the energy required to start the car from zero velocity to 5 m/s velocity.
Work done = Final Kinetic energy - Initial Kinetic energy
Thus the work utilized for moving the car is
Work done = 7500 J - 0 J = 7500 J
Thus, the initial kinetic energy of the car is zero, the final kinetic energy is 7500 J and the work utilized by the car is also 7500 J.