Reflecting telescopes are popular because they are more durable than a refracting telescopes.
There is a difference between these two types of telescopes, reflecting telescopes worked by reflecting light, they are also known as reflector and refracting telescopes worked by refracting light and they are also known as reflactor.
Reflecting telescopes also provides a good focus.
I would say option D, it depends on the size of the star
Gases have heavier molecules. Since all gases have the same average kinetic energy at the same temperature, lighter molecules move faster and heavier molecules move slower on average.
Answer:
at point F
Explanation:
To know the point in which the pendulum has the greatest potential energy you can assume that the zero reference of the gravitational energy (it is mandatory to define it) is at the bottom of the pendulum.
Then, when the pendulum reaches it maximum height in its motion the gravitational potential energy is
U = mgh
m: mass of the pendulum
g: gravitational constant
The greatest value is obtained when the pendulum reaches y=h
Furthermore, at this point the pendulum stops to come back in ts motion and then the speed is zero, and so, the kinetic energy (K=1/mv^2=0).
A) answer, at point F
The force on the tool is entirely in the negative-y direction.
So no work is done during any moves in the x-direction.
The work will be completely defined by
(Force) x (distance in the y-direction),
and it won't matter what route the tool follows to get anywhere.
Only the initial and final y-coordinates matter.
We know that F = - 2.85 y². (I have no idea what that ' j ' is doing there.)
Remember that 'F' is pointing down.
From y=0 to y=2.40 is a distance of 2.40 upward.
Sadly, since the force is not linear over the distance, I don't think
we can use the usual formula for Work = (force) x (distance).
I think instead we'll need to integrate the force over the distance,
and I can't wait to see whether I still know how to do that.
Work = integral of (F·dy) evaluated from 0 to 2.40
= integral of (-2.85 y² dy) evaluated from 0 to 2.40
= (-2.85) · integral of (y² dy) evaluated from 0 to 2.40 .
Now, integral of (y² dy) = 1/3 y³ .
Evaluated from 0 to 2.40 , it's (1/3 · 2.40³) - (1/3 · 0³)
= 1/3 · 13.824 = 4.608 .
And the work = (-2.85) · the integral
= (-2.85) · (4.608)
= - 13.133 .
-- There are no units in the question (except for that mysterious ' j ' after the 'F',
which totally doesn't make any sense at all).
If the ' F ' is newtons and the 2.40 is meters, then the -13.133 is joules.
-- The work done by the force is negative, because the force points
DOWN but we lifted the tool UP to 2.40. Somebody had to provide
13.133 of positive work to lift the tool up against the force, and the force
itself did 13.133 of negative work to 'allow' the tool to move up.
-- It doesn't matter whether the tool goes there along the line x=y , or
by some other route. WHATEVER the route is, the work done by ' F '
is going to total up to be -13.133 joules at the end of the day.
As I hinted earlier, the last time I actually studied integration was in 1972,
and I haven't really used it too much since then. But that's my answer
and I'm stickin to it. If I'm wrong, then I'm wrong, and I hope somebody
will show me where I'm wrong.