A person on Earth would weigh a lot more on the sun due to increased gravity.
The sun is a massive object as compared to the sun. It is assumed that the gravity must be a lot greater as well. It is the strong gravitational pull of the sun that keeps our planets from drifting off into space. No matter where you are the mass of an object will remain constant, so will the energy and the number of atoms they hold.
The answer is gravity.
Answer
given,
mass of the package = 12 kg
slides down distance = 2 m
angle of inclination = 53.0°
coefficient of kinetic friction = 0.4
a) work done on the package by friction is
W_f = -μk R d
= -μk (mg cos 53°)(2.0)
=-(0.4)(8.0 )(9.8)(cos 53°)(2.0)
= -37.75 J
b)
work done on the package by gravity is
W_g = m (g sin 53°) d
= (8.0 )(9.8 )(sin 53°)(2.0 )
=125.23 J
c)
the work done on the package by the normal force is
W_n = 0
d)
the net work done on the package is
W = -37.75 + 125.23 + 0
W = 87.84 J
Answer:
Electrical energy to kinetic energy
Explanation:
The transformation that occurs when turning on a fan is electrical energy to kinetic energy.
Area=side^2=4^2=16cm^2=0.0016m^2



When considering work, we always take the force directed along the axis of motion (in this case, the horizontal axis). If 40% of the force is directed downward, then 60% of the force is being directed horizontally, so the horizontal force is 250*0.6 = 150N. Work = Force * distance = 150N * 6.2m = 930J