Answer:
t = 0.24 s
Explanation:
As seen in the attached diagram, we are going to use dynamics to resolve the problem, so we will be using the equations for the translation and the rotation dyamics:
Translation: ΣF = ma
Rotation: ΣM = Iα ; where α = angular acceleration
Because the angular acceleration is equal to the linear acceleration divided by the radius, the rotation equation also can be represented like:
ΣM = I(a/R)
Now we are going to resolve and combine these equations.
For translation: Fx - Ffr = ma
We know that Fx = mgSin27°, so we substitute:
(1) mgSin27° - Ffr = ma
For rotation: (Ffr)(R) = (2/3mR²)(a/R)
The radius cancel each other:
(2) Ffr = 2/3 ma
We substitute equation (2) in equation (1):
mgSin27° - 2/3 ma = ma
mgSin27° = ma + 2/3 ma
The mass gets cancelled:
gSin27° = 5/3 a
a = (3/5)(gSin27°)
a = (3/5)(9.8 m/s²(Sin27°))
a = 2.67 m/s²
If we assume that the acceleration is a constant we can use the next equation to find the velocity:
V = √2ad; where d = 0.327m
V = √2(2.67 m/s²)(0.327m)
V = 1.32 m/s
Because V = d/t
t = d/V
t = 0.327m/1.32 m/s
t = 0.24 s
The mass number of an element tells us the number of protons AND neutrons in an atom (the two particles that have a measurable mass). Sodium has a mass number of 23amu. Since sodium has 11 protons, the number of neutrons must be 23 – 11 = 12 neutrons.
(a) Differentiate the position vector to get the velocity vector:
<em>r</em><em>(t)</em> = (3.00 m/s) <em>t</em> <em>i</em> - (4.00 m/s²) <em>t</em>² <em>j</em> + (2.00 m) <em>k</em>
<em>v</em><em>(t)</em> = d<em>r</em>/d<em>t</em> = (3.00 m/s) <em>i</em> - (8.00 m/s²) <em>t</em> <em>j</em>
<em></em>
(b) The velocity at <em>t</em> = 2.00 s is
<em>v</em> (2.00 s) = (3.00 m/s) <em>i</em> - (16.0 m/s) <em>j</em>
<em></em>
(c) Compute the electron's position at <em>t</em> = 2.00 s:
<em>r</em> (2.00 s) = (6.00 m) <em>i</em> - (16.0 m) <em>j</em> + (2.00 m) <em>k</em>
The electron's distance from the origin at <em>t</em> = 2.00 is the magnitude of this vector:
||<em>r</em> (2.00 s)|| = √((6.00 m)² + (-16.0 m)² + (2.00 m)²) = 2 √74 m ≈ 17.2 m
(d) In the <em>x</em>-<em>y</em> plane, the velocity vector at <em>t</em> = 2.00 s makes an angle <em>θ</em> with the positive <em>x</em>-axis such that
tan(<em>θ</em>) = (-16.0 m/s) / (3.00 m/s) ==> <em>θ</em> ≈ -79.4º
or an angle of about 360º + <em>θ</em> ≈ 281º in the counter-clockwise direction.
No I do not agree. It is because work is done when force acting o a body displace or covers certain displacement in the direction of force applied .