Answer:
Your answer would be C, Radio waves.
Explanation:
Answer:
C.<u>ten</u><u> </u><u>times</u><u> </u><u>the</u><u> </u><u>intensity</u><u>.</u>
There's no such thing as "stationary in space". But if the distance
between the Earth and some stars is not changing, then (A) w<span>avelengths
measured here would match the actual wavelengths emitted from these
stars. </span><span>
</span><span>If a star is moving toward us in space, then (A) Wavelengths measured
would be shorter than the actual wavelengths emitted from that star.
</span>In order to decide what's actually happening, and how that star is moving,
the trick is: How do we know the actual wavelengths the star emitted ?