Answer:
The correct answer is d. tension pneumothorax.
Explanation:
The increasing build-up of air that is in the pleural space is what we call the tension pneumothorax and this happens due to the lung laceration that lets the air to flee inside the pleural space but it does not return.
Answer:
To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.
The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.
Thus let the density of the material be Pm
50*3= 47.5*Pm
Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube
Thus with an average density of 2.8gram per centimeter cube
50*2.8= (50-x)*3.16
(50-x)= (50*2.8)/3.16
50-x=44.3
x=50-44.3= 5.7
Explanation:
To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.
The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.
Thus let the density of the material be Pm
50*3= 47.5*Pm
Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube
Thus with an average density of 2.8gram per centimeter cube
50*2.8= (50-x)*3.16
(50-x)= (50*2.8)/3.16
50-x=44.3
x=50-44.3= 5.7
Answer: the value of g in Death Valley is 10.417 m/s²
Explanation:
Given that;
acceleration due to gravity at the point is g = 9.8 m/s²
Lets say the acceleration due to gravity at the bottom of Death valley is g'
as the period of the pendulum is decreased by 3.00%
T' = 0.97 T
T is the period of the pendulum at sea level and T' is the period of the pendulum at bottom of Death valley
therefore from the relation
T = 2π√(l/g)
g'/g = T²/T'²
g' = (T²/ (0.97T)²)g
g' = 1.063g
g' = 10.417 m/s²
therefore the value of g in Death Valley is 10.417 m/s²
I think A, because rodents already live in winter months when little food is available, but I'm not sure.