Answer:
4.7m
Explanation:
Given parameters:
Mass of the book = 1kg
Gravitational potential energy = 46J
Unknown:
Height of the shelf = ?
Solution:
The potential energy is due to the position of a body above the ground.
Gravitational potential energy = mgh
m is the mass,
g is the acceleration due gravity = 9.8m/s²
h is the height which is unknown
46 = 1 x 9.8 x h
h = 4.7m
Jesus, jesus is always the answer
Answer:
Option (b) is correct.
Explanation:
Elastic collision is defined as a collision where the kinetic energy of the system remains same. Both linear momentum and kinetic energy are conserved in case of an elastic collision.
Inelastic collision is defined as a collision where kinetic energy of the system is not conserved whereas the linear momentum is conserved. This loss of kinetic energy may due to the conversion to thermal energy or sound energy or may be due to the deformation of the materials colliding with each other.
As given in the problem, before the collision, total momentum of the system is
and the kinetic energy is
. After the collision, the total momentum of the system is
, but the kinetic energy is reduced to
. So some amount of kinetic energy is lost during the collision.
Therefor the situation describes an inelastic collision (and it could NOT be elastic).
For the majority of instruments f = n f0 where f is the resonating frequency, n is any whole number and f0 is the fundamental.
<span>This applies to trumpets, violins, flutes and a broad range. </span>
<span>In such a </span>case<span> the first harmonic would be at n=1 and the second harmonic would be at n=2 </span>
<span>which gives a frequency of 84 Hz</span>
The statement shows a case of rotational motion, in which the disc <em>decelerates</em> at <em>constant</em> rate.
i) The angular acceleration of the disc (
), in revolutions per square second, is found by the following kinematic formula:
(1)
Where:
- Initial angular speed, in revolutions per second.
- Final angular speed, in revolutions per second.
- Time, in seconds.
If we know that
,
y
, then the angular acceleration of the disc is:


The angular acceleration of the disc is
radians per square second.
ii) The number of rotations that the disk makes before it stops (
), in revolutions, is determined by the following formula:
(2)
If we know that
,
y
, then the number of rotations done by the disc is:

The disc makes 3.125 revolutions before it stops.
We kindly invite to check this question on rotational motion: brainly.com/question/23933120