The time taken by the light reflected from sun to reach on earth will be 8.4 minutes.
To find the answer, we need to know about the distance travelled by light.
<h3>How to find the time taken by the light reflected from sun to reach on earth?</h3>
- So, in order to solve this problem, we must first know how far the moon is from Earth and how far the Sun is from the moon.
- These distances are given as 3.8×10^5 km (Earth-Moon) and 1.5×10^8 km (Sun- Earth).
- Since the Moon and Sun are on opposite sides of Earth during a full moon, the light's distance traveled equals,

- As we know that light travels at a speed of 300,000 km per second. then, the time taken by the light reflected from sun to reach on earth will be,

Thus, the time it takes for the light from the Sun to reach Earth and be recognized as 8.4 minutes.
Learn more about distance here:
brainly.com/question/11495758
#SPJ4
Sorry bro I just need points for my calculus exam
I'm assuming the question is what is the robin's speed relative to to the ground...
Create an equation that describes its relative motion.
rVg = rVa + aVg
Substitute values.
rVg = 12 m/s [N] + 6.8 m/s [E]
Use vector addition.
| rVg | = √ | rVa |² + | aVg |²
| rVg | = √ 144 m²/s² + 46.24 m²/s²
| rVg | = √ 19<u>0</u>.24 m²/s²
| rVg | = 1<u>3</u>.78 m/s
Find direction.
tanФ = aVg / rVa
tanФ = 6.8 m/s / 12 m/s
Ф = 29°
Therefore, the velocity of the robin relative to the ground is 14 m/s [N29°E]
By definition, the potential energy is:
U = qV
Where,
q: load
V: voltage.
Then, the kinetic energy is:
K = mv ^ 2/2
Where,
m: mass
v: speed.
As the power energy is converted into kinetic energy, we have then:
U = K
Equating equations:
qV = mv ^ 2/2
From here, we clear the speed:
v = root (2qV / m)
Substituting values we have:
v = root ((2 * (1.60218 × 10 ^ -19) * 3600) /9.10939×10^-31))
v = 3.56 × 10 ^ 7 m / s
Then, the centripetal force is:
Fc = Fm
mv ^ 2 / r = qvB
By clearing the magnetic field we have:
B = mv / qr
Substituting values:
B = (9.10939 × 10 ^ -31) * (3.56 × 10 ^ 7) / (1.60218 × 10 ^ -19) * 0.059
B = 3.43 × 10 ^ -3 T
Answer:
A magnetic field that must be experienced by the electron is:
B = 3.43 × 10 ^ -3 T
Ummm i am not going to be able say i am high