Answer:
A. 0.143 M
B. 0.0523 M
Explanation:
A.
Let's consider the neutralization reaction between potassium hydroxide and potassium hydrogen phthalate (KHP).
KOH + KHC₈H₄O₄ → H₂O + K₂C₈H₄O₄
The molar mass of KHP is 204.22 g/mol. The moles corresponding to 1.08 g are:
1.08 g × (1 mol/204.22 g) = 5.28 × 10⁻³ mol
The molar ratio of KOH to KHC₈H₄O₄ is 1:1. The reacting moles of KOH are 5.28 × 10⁻³ moles.
5.28 × 10⁻³ moles of KOH occupy a volume of 36.8 mL. The molarity of the KOH solution is:
M = 5.28 × 10⁻³ mol / 0.0368 L = 0.143 M
B.
Let's consider the neutralization of potassium hydroxide and perchloric acid.
KOH + HClO₄ → KClO₄ + H₂O
When the molar ratio of acid (A) to base (B) is 1:1, we can use the following expression.

6+2=115 and its good it took test
Answer:
The reaction that occurs is a redox reaction. The Copper metal (Cu 0)on the copper pennies is oxidized in concentrated nitric acid to produce Cu2+ ions. Copper is easily oxidized to Cu2+, which is blue in aqueous solutions (water) so you should see the solution turn blue as the copper penny reacts.
Have a nice day ;)(^-^)
Answer:
3.25×10²⁴ molecules
Explanation:
From the question given above, the following data were obtained:
Mass of H₂O = 97.2 g
Number of molecule of H₂O =?
From Avogadro's hypothesis, we understood that:
1 mole of H₂O = 6.02×10²³ molecules
Next, we shall determine the mass of 1 mole of H₂O. This can be obtained as follow:
1 mole of H₂O = (2×1) + 16
= 2 + 16
= 18 g
Thus,
18 g of H₂O = 6.02×10²³ molecules
Finally, we shall determine the number of molecules in 97.2 g of H₂O. This can be obtained as follow:
18 g of H₂O = 6.02×10²³ molecules
Therefore,
97.2 g of H₂O = 97.2 × 6.02×10²³ / 18
97.2 g of H₂O = 3.25×10²⁴ molecules
Thus, 97.2 g of H₂O contains 3.25×10²⁴ molecules.
I'm not completely sure but i think it's H2O. hope this helps :)