N2 + 3H2 = 2NH3
in this question, we are dealing with only NH3 and H2 so we only focus on that
since the ratio of H2 to 2NH3 is 3:2, we say that
3 liters of H2 = 2 liters of 2NH3
3.6 litres of H2 = x liters of 2NH3
We cross multiple to give:
3 × x = 3.6 × 2
3x = 7.2
Divide both sides by 3
x = 7.2 ÷ 3
x = 2.4liters
Answer:
Net ionic equation:
Ba²⁺(aq) + SO₄²⁻(aq) → BaSO₄(s)
Explanation:
Chemical equation:
BaCl₂ + Na₂SO₄ → BaSO₄ + NaCl
Balanced Chemical equation:
BaCl₂(aq) + Na₂SO₄(aq) → BaSO₄(s) + 2NaCl(aq)
Ionic equation:
Ba²⁺(aq) + 2Cl⁻(aq) + 2Na⁺(aq) + SO₄²⁻(aq) → BaSO₄(s)+ 2Na⁺(aq) + 2Cl⁻ (aq)
Net ionic equation:
Ba²⁺(aq) + SO₄²⁻(aq) → BaSO₄(s)
The Cl⁻(aq) and Na⁺ (aq) are spectator ions that's why these are not written in net ionic equation. The BaSO₄ can not be splitted into ions because it is present in solid form.
Spectator ions:
These ions are same in both side of chemical reaction. These ions are cancel out. Their presence can not effect the equilibrium of reaction that's why these ions are omitted in net ionic equation.
gas = methane
burn with O₂ (oxygen)
CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(l)
The answer is Al.
If it is a main group element with 3 electrons in its Lewis dot structure, it must be in group 3A. If it is in the 3p orbital section, then it must be in period 3, since the p orbital is a valence orbital and the number that preceeds it is the principal quantum number. Therefore, your answer is the element in period 3 and group 3A, which is aluminum.
Answer:
Here's what I get.
Explanation:
(b) Wavenumber and wavelength
The wavenumber is the distance over which a cycle repeats, that is, it is the number of waves in a unit distance.

Thus, if λ = 3 µm,

(a) Wavenumber and frequency
Since
λ = c/f and 1/λ = f/c
the relation between wavenumber and frequency is

Thus, if f = 90 THz

(c) Units
(i) Frequency
The units are s⁻¹ or Hz.
(ii) Wavelength
The SI base unit is metres, but infrared wavelengths are usually measured in micrometres (roughly 2.5 µm to 20 µm).
(iii) Wavenumber
The SI base unit is m⁻¹, but infrared wavenumbers are usually measured in cm⁻¹ (roughly 4000 cm⁻¹ to 500 cm⁻¹).