Your question seems to be incorrect. Please check below:
What force must the deltoid muscle provide to keep the arm in this position? By what factor does this force exceed the weight of the arm?<span>If you hold your arm outstretched with palm upward, as in (Figure 1) , the force to keep your arm from falling comes from your deltoid muscle. Assume that the arm has mass 4 kg and the distances and angles shown in (Figure 1) .
F=?
F/w= ?
The answer is </span><span>339 N</span><span>
</span>
Answer:
Plasma, which constitutes 55% of blood fluid, is mostly water (92% by volume), and contains proteins, glucose, mineral ions, hormones, carbon dioxide (plasma being the main medium for excretory product transportation), and blood cells themselves.
Explanation:
Answer:
She run for, t = 0.92 s
Explanation:
Given data,
The velocity of the runner, v = 10 km/h
The distance covered by the runner, d = 9.2 km
The relationship between the velocity, displacement and time is given by the formula,
t = d / v
Substituting the given values in the above equation,
t = 9.2 / 10
= 0.92 s
Hence, she ran for, t = 0.92 s
Answer:
Impedance = 93.75 ohms
Current = 1.81 A
Explanation:
Resistance = R = 80 ohms
Inductance = L = 0.2 H
Inductive reactance = XL =
= ωL = (2πf) L
= 2 (3.14) (60)(0.2) = 75.398 Ohms
Capacitive reactance = 1 / ωC = 1/(2πf)C = 1 / [(2π)(60)(0.1 × 10⁻3)]
= 26.526 Ohms
Impedance = Z =
=
= 93.747 ohms
Voltage =
× 120 = 169.7056 V
Current = I = V ÷ R = (169.7056) ÷ 93,747 = 1.81 A