The three main parts of an atom are protons, neutrons<span>, and </span>electrons<span>. </span>Protons<span> - have a positive charge, located in the </span>nucleus<span>, </span>Protons<span> and </span>neutrons<span> have nearly the same mass while </span>electrons<span> are much less massive. </span>Neutrons<span>- Have a negative charge, located in the </span><span>nucleus</span>
Explanation:
The Coulomb's law states that the magnitude of each of the electric forces between two point-at-rest charges is directly proportional to the product of the magnitude of both charges and inversely proportional to the square of the distance that separates them:

In this case we have an electron (-e) and a proton (e), so:

In this case, the electric force is negative, therefore, the force is repulsive and its magnitude is:

Answer:
0.5m
Explanation:
v=f×lamda
v is 300m/s, f is 600Hz, lamda is ?
lamda=v/f
lamda=300/600
lamda =3/6=1/2m
Change in momentum: finial momentum - initial momentum
Momentum = mass * velocity
Mass = 100g, same as 0.1kg
m(v-u) = 0.1(10-2) = 0.1(8)
The answer is 0.8Ns