James E. Hansen studied climate change
complete question:
A child bounces a 60 g superball on the sidewalk. The velocity change of the superball is from 22 m/s downward to 15 m/s upward. If the contact time with the sidewalk is 1/800 s, what is the magnitude of the average force exerted on the superball by the sidewalk
Answer:
F = 1776 N
Explanation:
mass of ball = 60 g = 0.06 kg
velocity of downward direction = 22 m/s = v1
velocity of upward direction = 15 m/s = v2
Δt = 1/800 = 0.00125 s
Linear momentum of a particle with mass and velocity is the product of the mass and it velocity.
p = mv
When a particle move freely and interact with another system within a period of time and again move freely like in this scenario it has a definite change in momentum. This change is defined as Impulse .
I = pf − pi = ∆p
F = ∆p/∆t = I/∆t
let the upward velocity be the positive
Δp = mv2 - m(-v1)
Δp = mv2 - m(-v1)
Δp = m (v2 + v1)
Δp = 0.06( 15 + 22)
Δp = 0.06(37)
Δp = 2.22 kg m/s
∆t = 0.00125
F = ∆p/∆t
F = 2.22/0.00125
F = 1776 N
•Every action has an equal and opposite reaction (the object is putting force on the target, and the target is putting an equal amount of force back)
•Am object in motion (the object) will stay in motion unless an outside force acts upon it (the Target)
And as for the third one I really don’t know, those seem to be the only two, I’m sorry. I did what a could, Hope it kinda helps :)
How do you want me to give you points tell me and I’ll do it
Answer:
691.13 nm
Explanation:
d = width of the slit = 0.11 x 10⁻³ m
θ = angle of diffraction pattern = 0.72° degree
λ = wavelength of the light = ?
m = order = 2 (since second minimum)
for the second minimum diffraction pattern we use the equation
d Sinθ = m λ
Inserting the values
(0.11 x 10⁻³) Sin0.72 = (2) λ
λ = 691.13 x 10⁻⁹ m
λ = 691.13 nm