<span>From the point of view of the astronaut, he travels between planets with a speed of 0.6c. His distance between the planets is less than the other bodies around him and so by applying Lorentz factor, we have 2*</span>√1-0.6² = 1.6 light hours. On the other hand, from the point of view of the other bodies, time for them is slower. For the bodies, they have to wait for about 1/0.6 = 1.67 light hours while for him it is 1/(0.8) = 1.25 light hours. The remaining distance for the astronaut would be 1.67 - 1.25 = 0.42 light hours. And then, light travels in all frames and so the astronaut will see that the flash from the second planet after 0.42 light hours and from the 1.25 light hours is, 1.25 - 0.42 = 0.83 light hours or 49.8 minutes.
Explanation:
A concave mirror can form real, inverted images of various sizes and virtual, erect and enlarged images whereas a concave lens forms only virtual, errect and diminished images.
Answer: This is what I found hope it helps
Explanation:
Answer:
The final temperature of the two objects is the same.
Explanation:
The expression for the heat energy in terms of mass, specific heat and the change in the temperature is as follows:

Here, Q is the heat energy, m is the mass of the object, c is the specific heat and
are the final temperature and initial temperature.
According to the given question, Two objects of the same mass, but made of different materials, are initially at the same temperature. Equal amounts of heat are added to each object.
............(1)
.............(2)
From (1) and (2),



Therefore, the final temperature of the two objects is the same.
Answer:
d. Direction and magnitude
Explanation:
The two components of a vector are its magnitude and direction.
Magnitude is the quantity of the substance
Direction is the path.
- Other quantities are called scalar quantities.
- Scalar quantities have only magnitude but no direction.
Examples of vector quantities are velocity, displacement, acceleration.