1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
astraxan [27]
3 years ago
11

Suppose a horizontal wind blows with a speed of 12.6 m/s outside a large pane of plate glass with dimensions 3.00 m x 1.80 m. As

sume the density of the air to be 1.30 kg/m3. The air inside the building is at atmospheric pressure. What If? If a second skyscraper is built nearby, the airspeed can be especially high where wind passes through the narrow separation between the buildings. (c) Find the pressure with a wind speed twice as high.
Physics
1 answer:
Wewaii [24]3 years ago
6 0

Answer:

Explanation:

Given to find the pressure

v = 12.6 m/s , A = 3.0m * 1.8 m = 54 m^2

p air = 1.3 kg/m^3

F = 1/2 * p *v^2 *A

F = 1/2 *1.3 kg/m^3 * (12.6 m/s)^2 * 54m^2

F = 5572.476 N

The stress and the pressure can find across the area

α = F /A

α = 5572.476 N / 54 m^2

α = 103.194 Pa

You might be interested in
Scientists believe that Earth and the other planets formed _____.
Gnoma [55]
C. during the same time span and from the same material as the sun
5 0
3 years ago
Read 2 more answers
Images formed by a convex mirror are always ​
gladu [14]

Answer:

Images formed by a convex mirror are always ​virtual

Explanation:

A virtual image is always created by a convex mirror, and it is always situated behind the mirror. The picture is vertical and situated at the focus point when the item is far away from the mirror. As the thing approaches the mirror, the image follows suit and increases until it reaches the same height as the object.

<u>OAmalOHopeO</u>

4 0
2 years ago
The equation r (t )=(2t + 4)⋅i + (√ 7 )t⋅ j + 3t ²⋅k the position of a particle in space at time t. Find the angle between the v
velikii [3]

Answer:

\theta = n\pi/2, {\rm where~n~is~an~integer.}

Explanation:

We should first find the velocity and acceleration functions. The velocity function is the derivative of the position function with respect to time, and the acceleration function is the derivative of the velocity function with respect to time.

\vec{v}(t) = \frac{d\vec{r}(t)}{dt} = (2)\^i + (\sqrt{7})\^j + (6t)\^k

Similarly,

\vec{a}(t) = \frac{d\vec{v}(t)}{dt} = (6)\^k

Now, the angle between velocity and acceleration vectors can be found.

The angle between any two vectors can be found by scalar product of them:

\vec{A}.\vec{B} = |\vec{A}|.|\vec{B}|.\cos(\theta)

So,

\vec{v}(t).\vec{a}(t) = |\vec{v}(t)|.|\vec{a}(t)|.\cos(\theta)\\36t = \sqrt{4 + 7 + 36t^2}.6.\cos(\theta)

At time t = 0, this equation becomes

0 = 6\sqrt{11}\cos(\theta)\\\cos(\theta) = 0\\\theta = n\pi/2, {\rm where~n~is~an~integer.}

7 0
2 years ago
Air as an ideal gas enters a diffuser operating at steady state at 5 bar, 280 K with a velocity of 510 m/s. The exit velocity is
Nataly [62]

Answer:

Explanation:

Calculating the exit temperature for K = 1.4

The value of c_p is determined via the expression:

c_p = \frac{KR}{K_1}

where ;

R = universal gas constant = \frac{8.314 \ J}{28.97 \ kg.K}

k = constant = 1.4

c_p = \frac{1.4(\frac{8.314}{28.97} )}{1.4 -1}

c_p= 1.004 \ kJ/kg.K

The derived expression from mass and energy rate balances reduce for the isothermal process of ideal gas is :

0=(h_1-h_2)+\frac{(v_1^2-v_2^2)}{2}     ------ equation(1)

we can rewrite the above equation as :

0 = c_p(T_1-T_2)+ \frac{(v_1^2-v_2^2)}{2}

T_2 =T_1+ \frac{(v_1^2-v_2^2)}{2 c_p}

where:

T_1  = 280 K \\ \\ v_1 = 510 m/s \\ \\ v_2 = 120 m/s \\ \\c_p = 1.0004 \ kJ/kg.K

T_2= 280+\frac{((510)^2-(120)^2)}{2(1.004)} *\frac{1}{10^3}

T_2 = 402.36 \ K

Thus, the exit temperature = 402.36 K

The exit pressure is determined by using the relation:\frac{T_2}{T_1} = (\frac{P_2}{P_1})^\frac{k}{k-1}

P_2=P_1(\frac{T_2}{T_1})^\frac{k}{k-1}

P_2 = 5 (\frac{402.36}{280} )^\frac{1.4}{1.4-1}

P_2 = 17.79 \ bar

Therefore, the exit pressure is 17.79 bar

7 0
2 years ago
Sound
Ann [662]
Longitudinal, because the sound can only travel at one direction
3 0
2 years ago
Read 2 more answers
Other questions:
  • Nancy is pushing her empty grocery cart at a rate of 1.8 m/s. 30 seconds later,
    12·1 answer
  • How do I figure out if the acceleration is negative, positive or zero ?
    13·1 answer
  • A tennis player receives a shot with the ball (0.0600 kg) traveling horizontally at 50.4 m/s and returns the shot with the ball
    14·1 answer
  • hen a series combination of two capacitors is connected to a 12 V battery, 173 of energy is drawn from the battery. If one of th
    9·2 answers
  • What organelle is found in all animal cells and some plant cells
    8·1 answer
  • If a diver below the water's surface shines a light up at the bottom of the oil film, at what wavelength (as measured in water)
    13·1 answer
  • Jaclyn plays singles for South's varsity tennis team. During the match against North, Jaclyn won the sudden death tiebreaker poi
    6·1 answer
  • A jet plane is moving at a constant velocity on a flat surface. Which forces act against the forward motion of the plane? A. Gra
    11·1 answer
  • In the following circuit (Fig.3), calculate the intensity I through the resistance 3 using the principle of superposition.
    7·1 answer
  • A projectile is fored vertically upward with an initial velocity of 190 m/s. Find the maximum height of the projectile.​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!