Answer:
condensation
Explanation:
Frost forms when an outside surface cools past the dew point. The dew point is the point where the air gets so cold, the water vapor in the atmosphere turns into liquid. This liquid freezes. If it gets cold enough, little bits of ice, or frost, form
Answer:
a) The work done is 10.0777 kJ
b) The water's change in internal energy is -122.1973 kJ
Explanation:
Given data:
1 mol of liquid water
T₁ = temperature = 100.9°C
P = pressure = 1 atm
Endothermic reaction
T₂ = temperature = 100°C
1 mol of water vapor
VL = volume of liquid water = 18.8 mL = 0.0188 L
VG = volume of water vapor = 30.62 L
3.25 moles of liquid water vaporizes
Q = heat added to the system = -40.7 kJ
Questions: a) Calculate the work done on or by the system, W = ?
b) Calculate the water's change in internal energy, ΔU = ?
Heat for 3.25 moles:

The work done:

The change in internal energy:

Answer: Option (b) is the correct answer.
Explanation:
The process in which sediment moves downhill is known as mass movement.
Different types of mass movement are landslides, mud slides, slump, creep etc.
Mud flow contains mass of saturated rock particles of all sizes. Mud flow arises due to sudden flood of water or due to heavy rain in a dry region (semi-arid region). Soil and rocks from a large slope area flow along with the flood water and gets washed to a gulch or canyon.
As a result, debris and water moves down canyon and lay out on the gentle slopes below.
Thus, we can conclude that mud flow is most likely facilitates mass movement after heavy rains in a dry region.
Answer:
V = 6.17 L
Explanation:
Given data:
Volume = ?
Number of moles = 0.382 mol
Pressure = 1.50 atm
Temperature = 295 k
R = 0.0821 L. atm. /mol. k
Solution:
According to ideal gas equation:
PV= nRT
V = nRT/P
V = 0.382 mol × 0.0821 L. atm. /mol. k ×295 k / 1.50 atm
V = 9.252 L. atm. / 1.50 atm
V = 6.17 L
Answer:
C. P = nRT
Explanation:
PV = nRT, where n is a number of moles and R is the universal gas constant, R = 8.31 J/mol ⋅ K.
Hope this helps :)